Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
49,773 result(s) for "Data Analytics"
Sort by:
Big data analytics for data-driven industry: a review of data sources, tools, challenges, solutions, and research directions
The study of big data analytics (BDA) methods for the data-driven industries is gaining research attention and implementation in today’s industrial activities, business intelligence, and rapidly changing the perception of industrial revolutions. The uniqueness of big data and BDA has created unprecedented new research calls to solve data generation, storage, visualization, and processing challenges. There are significant gaps in knowledge for researchers and practitioners on the right information and BDA tools to extract knowledge in large significant industrial data that could help to handle big data formats. Notwithstanding various research efforts and scholarly studies that have been proposed recently on big data analytic processes for industrial performance improvements. Comprehensive review and systematic data-driven analysis, comparison, and rigorous evaluation of methods, data sources, applications, major challenges, and appropriate solutions are still lacking. To fill this gap, this paper makes the following contributions: presents an all-inclusive survey of current trends of BDA tools, methods, their strengths, and weaknesses. Identify and discuss data sources and real-life applications where BDA have potential impacts. Other main contributions of this paper include the identification of BDA challenges and solutions, and future research prospects that require further attention by researchers. This study provides an insightful recommendation that could assist researchers, industrial practitioners, big data providers, and governments in the area of BDA on the challenges of the current BDA methods, and solutions that would alleviate these challenges.
Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review
The brain–computer interface (BCI) is an emerging technology that has the potential to revolutionize the world, with numerous applications ranging from healthcare to human augmentation. Electroencephalogram (EEG) motor imagery (MI) is among the most common BCI paradigms that have been used extensively in smart healthcare applications such as post-stroke rehabilitation and mobile assistive robots. In recent years, the contribution of deep learning (DL) has had a phenomenal impact on MI-EEG-based BCI. In this work, we systematically review the DL-based research for MI-EEG classification from the past ten years. This article first explains the procedure for selecting the studies and then gives an overview of BCI, EEG, and MI systems. The DL-based techniques applied in MI classification are then analyzed and discussed from four main perspectives: preprocessing, input formulation, deep learning architecture, and performance evaluation. In the discussion section, three major questions about DL-based MI classification are addressed: (1) Is preprocessing required for DL-based techniques? (2) What input formulations are best for DL-based techniques? (3) What are the current trends in DL-based techniques? Moreover, this work summarizes MI-EEG-based applications, extensively explores public MI-EEG datasets, and gives an overall visualization of the performance attained for each dataset based on the reviewed articles. Finally, current challenges and future directions are discussed.
An Introduction to Machine Learning
This textbook presents fundamental machine learning concepts in an easy to understand manner by providing practical advice, using straightforward examples, and offering engaging discussions of relevant applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of \"boosting,\" how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms. This revised edition contains three entirely new chapters on critical topics regarding the pragmatic application of machine learning in industry. The chapters examine multi-label domains, unsupervised learning and its use in deep learning, and logical approaches to induction as well as Inductive Logic Programming. Numerous chapters have been expanded, and the presentation of the material has been enhanced. The book contains many new exercises, numerous solved examples, thought-provoking experiments, and computer assignments for independent work.
Risk prediction in financial management of listed companies based on optimized BP neural network under digital economy
In the era of \"Internet plus,\" the world economy is becoming more and more globalized and informationalized. China's enterprises are facing unprecedented opportunities for their operation and development. However, it is also facing the financial uncertainties brought about by the fluctuations of the general economic environment, and the company is facing increasing financial risks. The reason why most enterprises encounter a serious financial crisis or even close down in the later stage is that they do not pay full attention to the initial financial problems and do not take effective measures to deal with the crisis in time. Financial risk warning has become an important part of modern enterprise financial management. This paper mainly puts forward the optimized BP neural system as the financial early warning model and ensures its high prediction accuracy. In the research, the operation principle and related reasoning process of the model are described, its shortcomings are analyzed, and solutions are put forward. Through the financial risk analysis of listed companies from 2017 to 2020, we find that the correct rate of the prediction results of the financial distress of normal companies in the selected companies based on the optimized BPNN has reached more than 80%, which proves the effectiveness of the optimized BPNN.
Big data analytics in smart grids: state‐of‐the‐art, challenges, opportunities, and future directions
Big data has potential to unlock novel groundbreaking opportunities in power grid that enhances a multitude of technical, social, and economic gains. As power grid technologies evolve in conjunction with measurement and communication technologies, this results in unprecedented amount of heterogeneous big data. In particular, computational complexity, data security, and operational integration of big data into power system planning and operational frameworks are the key challenges to transform the heterogeneous large dataset into actionable outcomes. In this context, suitable big data analytics combined with visualization can lead to better situational awareness and predictive decisions. This paper presents a comprehensive state‐of‐the‐art review of big data analytics and its applications in power grids, and also identifies challenges and opportunities from utility, industry, and research perspectives. The paper analyzes research gaps and presents insights on future research directions to integrate big data analytics into power system planning and operational frameworks. Detailed information for utilities looking to apply big data analytics and insights on how utilities can enhance revenue streams and bring disruptive innovation are discussed. General guidelines for utilities to make the right investment in the adoption of big data analytics by unveiling interdependencies among critical infrastructures and operations are also provided.
Challenges of big data analytics for sustainable supply chains in healthcare – a resource-based view
PurposeRegardless of the diverse research on big data analytics (BDA) across different supply chains, little attention has been paid to exploit this information across service supply chains. The healthcare supply chains, where supply chain operations consume the second highest expenditures, have not completely attained the potential gains from data analytics. So, this paper explores the challenges of BDA at various levels of healthcare supply chains.Design/methodology/approachDrawing on the resource-based view (RBV), this research explores the various challenges of big data at organizational and operational level of different nodes in healthcare supply chains. To demonstrate the links among supply chain nodes, the authors have used a supplier-input-process-output-customer (SIPOC) chart to list healthcare suppliers, inputs (such as employees) supplied and used by the main healthcare processes, outputs (products and services) of these processes, and customers (patients and community).FindingsUsing thematic analysis, the authors were able to identify numerous challenges and commonalities among these challenges for the case of healthcare supply chains across United Arab Emirates (UAE). An applicable exploration on organizational (Socio-technical) and operational challenges to BDA can enable healthcare managers to acclimate efficient and effective strategies.Research limitations/implicationsThe identified common socio-technical and operational challenges could be verified, and their impacts on the sustainable performance of various supply chains should be explored using formal research methods.Practical implicationsThis research advances the body of literature on BDA in healthcare supply chains in that (1) it presents a structured approach for exploring the challenges from various stakeholders of healthcare chain; (2) it presents the most common challenges of big data across the chain and finally (3) it uses the context of UAE where government is focusing on medical tourism in the coming years.Originality/valueOriginality of this work stems from the fact that most of the previous academic research in this area has focused on technology perspectives, a clear understanding of the managerial and strategic implications and challenges of big data is still missing in the literature.