Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
115,446 result(s) for "Deep neural network"
Sort by:
Skip and chain connected deep fusion network for lung cancer screening
The second most prevalent and deadly disease in the world is lung cancer. It is become more difficult to detect lung cancer in its early stages in humans. A novel deep learning architecture is suggested in this study to identify lung cancer in its early stages. To distinguish between the diseased and healthy samples, the suggested deep learning structure facilitates in-depth analysis and the creation of superior feature maps. Two independent deep neural network models are combined in the proposed H-DNN (Hybrid deep neural networks) architecture. DNN-1 or SC-SDNN, the first neural network, is used to analyse spatial data, and DNN-2 or CC-FDNN, the second neural network, is used to evaluate frequency data. In order to prevent vanishing gradients, we also added the short connection in the first deep network and the chain connection in the second. Finally, to achieve a better result, we combine both neural networks. The first neural network uses spatial information from the original raw image as its training input, whereas the second neural network uses frequencies generated by wavelets. Our technique outperformed more traditional CNN and SVM classifiers, with a classification accuracy of 98.2%.
The social media sentiment analysis framework: deep learning for sentiment analysis on social media
Researching public opinion can help us learn important facts. People may quickly and easily express their thoughts and feelings on any subject using social media, which creates a deluge of unorganized data. Sentiment analysis on social media platforms like Twitter and Facebook has developed into a potent tool for gathering insights into users' perspectives. However, difficulties in interpreting natural language limit the effectiveness and precision of sentiment analysis. This research focuses on developing a social media sentiment analysis (SMSA) framework, incorporating a custom-built emotion thesaurus to enhance the precision of sentiment analysis. It delves into the efficacy of various deep learning algorithms, under different parameter calibrations, for sentiment extraction from social media. The study distinguishes itself by its unique approach towards sentiment dictionary creation and its application to deep learning models. It contributes new insights into sentiment analysis, particularly in social media contexts, showcasing notable advancements over previous methodologies. The results demonstrate improved accuracy and deeper understanding of social media sentiment, opening avenues for future research and applications in diverse fields.
Time‐Lapse Image Classification Using a Diffractive Neural Network
Diffractive deep neural networks (D2NNs), comprised of spatially engineered passive surfaces, collectively process optical input information at the speed of light propagation through a thin diffractive volume, without any external computing power. Diffractive networks were demonstrated to achieve all‐optical object classification and perform universal linear transformations. Herein, a “time‐lapse” image classification scheme using a diffractive network is demonstrated for the first time, significantly advancing its classification accuracy and generalization performance on complex input objects by using the lateral movements of the input objects and/or the diffractive network, relative to each other. In a different context, such relative movements of the objects and/or the camera are routinely being used for image super‐resolution applications; inspired by their success, a time‐lapse diffractive network is designed to benefit from the complementary information content created by controlled or random lateral shifts. The design space and performance limits of time‐lapse diffractive networks are numerically explored, revealing a blind testing accuracy of 62.03% on the optical classification of objects from the CIFAR‐10 dataset. This constitutes the highest inference accuracy achieved so far using a single diffractive network on the CIFAR‐10 dataset. Time‐lapse diffractive networks will be broadly useful for the spatiotemporal analysis of input signals using all‐optical processors. A time‐lapse image classification scheme using a diffractive optical network is introduced to significantly advance its classification accuracy and generalization performance on complex objects by using the lateral movements of the input objects and/or the diffractive network, relative to each other. Time‐lapse diffractive networks create new opportunities for the spatiotemporal analysis of input signals using all‐optical processors.
Deep Learning for Knock Occurrence Prediction in SI Engines
This research aims to predict knock occurrences by deep learning using in-cylinder pressure history from experiments and to elucidate the period in pressure history that is most important for knock prediction. Supervised deep learning was conducted using in-cylinder pressure history as an input and the presence or absence of knock in each cycle as a label. The learning process was conducted with and without cost-sensitive approaches to examine the influence of an imbalance in the numbers of knock and non-knock cycles. Without the cost-sensitive approach, the prediction accuracy exceeded 90% and both the precision and the recall were about 70%. In addition, the trade-off between precision and recall could be controlled by adjusting the weights of knock and non-knock cycles in the cost-sensitive approach. Meanwhile, it was found that including the pressure history of the previous cycle did not influence the classification accuracy, suggesting little relationship between the combustion behavior of the previous cycle and knock occurrence in the following cycle. Moreover, learning the pressure history up to 10° CA before a knock improved the classification accuracy, whereas learning it within 10° CA before a knock did not noticeably affect the accuracy. Finally, deep learning was conducted using data, including multiple operating conditions. The present study revealed that deep learning can effectively predict knock occurrences using in-cylinder pressure history.
Intrusion Detection Based on Device-Free Localization in the Era of IoT
Device-free localization (DFL) locates targets without being equipped with the attached devices, which is of great significance for intrusion detection or monitoring in the era of the Internet-of-Things (IoT). Aiming at solving the problems of low accuracy and low robustness in DFL approaches, in this paper, we first treat the RSS signal as an RSS-image matrix and conduct a process of eliminating the background to dig out the variation component with distinguished features. Then, we make use of these feature-rich images by formulating DFL as an image classification problem. Furthermore, a deep convolutional neural network (CNN) is designed to extract features automatically for classification. The localization performance of the proposed background elimination-based CNN (BE-CNN) scheme is validated with a real-world dataset of outdoor DFL. In addition, we also validate the robust performance of the proposal by conducting numerical experiments with different levels of noise. Experimental results demonstrate that the proposed scheme has an obvious advantage in terms of improving localization accuracy and robustness for DFL. Particularly, the BE-CNN can maintain the highest localization accuracy of 100%, even in noisy conditions when the SNR is over −5 dB. The BE-based methods can outperform all the corresponding raw data-based methods in terms of the localization accuracy. In addition, the proposed method can outperform the comparison methods, deep neural network with autoencoder, K-nearest-neighbor (KNN), support vector machines (SVM), etc., in terms of the localization accuracy and robustness.
Fitness Movement Types and Completeness Detection Using a Transfer-Learning-Based Deep Neural Network
Fitness is important in people’s lives. Good fitness habits can improve cardiopulmonary capacity, increase concentration, prevent obesity, and effectively reduce the risk of death. Home fitness does not require large equipment but uses dumbbells, yoga mats, and horizontal bars to complete fitness exercises and can effectively avoid contact with people, so it is deeply loved by people. People who work out at home use social media to obtain fitness knowledge, but learning ability is limited. Incomplete fitness is likely to lead to injury, and a cheap, timely, and accurate fitness detection system can reduce the risk of fitness injuries and can effectively improve people’s fitness awareness. In the past, many studies have engaged in the detection of fitness movements, among which the detection of fitness movements based on wearable devices, body nodes, and image deep learning has achieved better performance. However, a wearable device cannot detect a variety of fitness movements, may hinder the exercise of the fitness user, and has a high cost. Both body-node-based and image-deep-learning-based methods have lower costs, but each has some drawbacks. Therefore, this paper used a method based on deep transfer learning to establish a fitness database. After that, a deep neural network was trained to detect the type and completeness of fitness movements. We used Yolov4 and Mediapipe to instantly detect fitness movements and stored the 1D fitness signal of movement to build a database. Finally, MLP was used to classify the 1D signal waveform of fitness. In the performance of the classification of fitness movement types, the mAP was 99.71%, accuracy was 98.56%, precision was 97.9%, recall was 98.56%, and the F1-score was 98.23%, which is quite a high performance. In the performance of fitness movement completeness classification, accuracy was 92.84%, precision was 92.85, recall was 92.84%, and the F1-score was 92.83%. The average FPS in detection was 17.5. Experimental results show that our method achieves higher accuracy compared to other methods.
Deep learning approach for microarray cancer data classification
Analysis of microarray data is a highly challenging problem due to the inherent complexity in the nature of the data associated with higher dimensionality, smaller sample size, imbalanced number of classes, noisy data-structure, and higher variance of feature values. This has led to lesser classification accuracy and over-fitting problem. In this work, the authors aimed to develop a deep feedforward method to classify the given microarray cancer data into a set of classes for subsequent diagnosis purposes. They have used a 7-layer deep neural network architecture having various parameters for each dataset. The small sample size and dimensionality problems are addressed by considering a well-known dimensionality reduction technique namely principal component analysis. The feature values are scaled using the Min–Max approach and the proposed approach is validated on eight standard microarray cancer datasets. To measure the loss, a binary cross-entropy is used and adaptive moment estimation is considered for optimisation. The performance of the proposed approach is evaluated using classification accuracy, precision, recall, f-measure, log-loss, receiver operating characteristic curve, and confusion matrix. A comparative analysis with state-of-the-art methods is carried out and the performance of the proposed approach exhibit better performance than many of the existing methods.
A Review of Binarized Neural Networks
In this work, we review Binarized Neural Networks (BNNs). BNNs are deep neural networks that use binary values for activations and weights, instead of full precision values. With binary values, BNNs can execute computations using bitwise operations, which reduces execution time. Model sizes of BNNs are much smaller than their full precision counterparts. While the accuracy of a BNN model is generally less than full precision models, BNNs have been closing accuracy gap and are becoming more accurate on larger datasets like ImageNet. BNNs are also good candidates for deep learning implementations on FPGAs and ASICs due to their bitwise efficiency. We give a tutorial of the general BNN methodology and review various contributions, implementations and applications of BNNs.
ECG signal classification with binarized convolutional neural network
Arrhythmias are a group of common conditions associated with irregular heart rhythms. Some of these conditions, for instance, atrial fibrillation (AF), might develop into serious syndromes if not treated in time. Therefore, for high-risk patients, early detection of arrhythmias is crucial. In this study, we propose employing deep convolutional neural network (CNN)-based algorithms for real-time arrhythmia detection. We first build a full-precision deep convolutional network model. With our proposed construction, we are able to achieve state-of-the-art level performance on the PhysioNet/CinC AF Classification Challenge 2017 dataset with our full-precision model. It is desirable to employ models with low computing resource requirements. It has been shown that a binarized model requires much less computing power and memory space than a full-precision model. We proceed to verify the feasibility of binarization in our neural network model. Network binarization can cause significant model performance degradation. Therefore, we propose employing a full-precision model as the teacher to regularize the training of the binarized model through knowledge distillation. With our proposed approach, we observe that network binarization only causes a small performance loss (the F1 score decreases from 0.88 to 0.87 for the validation set). Given that binarized convolutional networks can achieve favorable model performance while dramatically reducing computing cost, they are ideal for deployment on long-term cardiac condition monitoring devices. (Source code is available at https://github.com/yangfansun/bnn-ecg). •Real-time ECG monitoring can be an important life-saving tool.•A binarized 1-D convolutional neural network is a good candidate for the task.•Naïve binarized models suffer from significant performance loss.•With a proper strategy, binarized models can achieve good performance for the task.
DeepNGlyPred: A Deep Neural Network-Based Approach for Human N-Linked Glycosylation Site Prediction
Protein N-linked glycosylation is a post-translational modification that plays an important role in a myriad of biological processes. Computational prediction approaches serve as complementary methods for the characterization of glycosylation sites. Most of the existing predictors for N-linked glycosylation utilize the information that the glycosylation site occurs at the N-X-[S/T] sequon, where X is any amino acid except proline. Not all N-X-[S/T] sequons are glycosylated, thus the N-X-[S/T] sequon is a necessary but not sufficient determinant for protein glycosylation. In that regard, computational prediction of N-linked glycosylation sites confined to N-X-[S/T] sequons is an important problem. Here, we report DeepNGlyPred a deep learning-based approach that encodes the positive and negative sequences in the human proteome dataset (extracted from N-GlycositeAtlas) using sequence-based features (gapped-dipeptide), predicted structural features, and evolutionary information. DeepNGlyPred produces SN, SP, MCC, and ACC of 88.62%, 73.92%, 0.60, and 79.41%, respectively on N-GlyDE independent test set, which is better than the compared approaches. These results demonstrate that DeepNGlyPred is a robust computational technique to predict N-Linked glycosylation sites confined to N-X-[S/T] sequon. DeepNGlyPred will be a useful resource for the glycobiology community.