Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
476 result(s) for "Default Mode Network - diagnostic imaging"
Sort by:
Psilocybin desynchronizes the human brain
A single dose of psilocybin, a psychedelic that acutely causes distortions of space–time perception and ego dissolution, produces rapid and persistent therapeutic effects in human clinical trials 1 – 4 . In animal models, psilocybin induces neuroplasticity in cortex and hippocampus 5 – 8 . It remains unclear how human brain network changes relate to subjective and lasting effects of psychedelics. Here we tracked individual-specific brain changes with longitudinal precision functional mapping (roughly 18 magnetic resonance imaging visits per participant). Healthy adults were tracked before, during and for 3 weeks after high-dose psilocybin (25 mg) and methylphenidate (40 mg), and brought back for an additional psilocybin dose 6–12 months later. Psilocybin massively disrupted functional connectivity (FC) in cortex and subcortex, acutely causing more than threefold greater change than methylphenidate. These FC changes were driven by brain desynchronization across spatial scales (areal, global), which dissolved network distinctions by reducing correlations within and anticorrelations between networks. Psilocybin-driven FC changes were strongest in the default mode network, which is connected to the anterior hippocampus and is thought to create our sense of space, time and self. Individual differences in FC changes were strongly linked to the subjective psychedelic experience. Performing a perceptual task reduced psilocybin-driven FC changes. Psilocybin caused persistent decrease in FC between the anterior hippocampus and default mode network, lasting for weeks. Persistent reduction of hippocampal-default mode network connectivity may represent a neuroanatomical and mechanistic correlate of the proplasticity and therapeutic effects of psychedelics. Healthy adults were tracked before, during and after high doses of psilocybin and methylphenidate to assess how psychedelics can change human brain networks, and psilocybin was found to massively disrupt functional connectivity in cortex and subcortex with some changes persisting for weeks.
Development of the default-mode network during childhood and adolescence: A longitudinal resting-state fMRI study
The default-mode network (DMN) is a set of functionally connected regions that play crucial roles in internal cognitive processing. Previous resting-state fMRI studies have demonstrated that the intrinsic functional organization of the DMN undergoes remarkable reconfigurations during childhood and adolescence. However, these studies have mainly focused on cross-sectional designs with small sample sizes, limiting the consistency and interpretations of the findings. Here, we used a large sample of longitudinal resting-state fMRI data comprising 305 typically developing children (6–12 years of age at baseline, 491 scans in total) and graph theoretical approaches to delineate the developmental trajectories of the functional architecture of the DMN. For each child, the DMN was constructed according to a prior parcellation with 32 brain nodes. We showed that the overall connectivity increased in strength from childhood to adolescence and became spatially similar to that in the young adult group (N = 61, 18–28 years of age). These increases were primarily located in the midline structures. Global and local network efficiency in the DMN also increased with age, indicating an enhanced capability in parallel information communication within the brain system. Based on the divergent developmental rates of nodal centrality, we identified three subclusters within the DMN, with the fastest rates in the cluster mainly comprising the anterior medial prefrontal cortex and posterior cingulate cortex. Together, our findings highlight the developmental patterns of the functional architecture in the DMN from childhood to adolescence, which has implications for the understanding of network mechanisms underlying the cognitive development of individuals.
The default mode network in cognition: a topographical perspective
The default mode network (DMN) is a set of widely distributed brain regions in the parietal, temporal and frontal cortex. These regions often show reductions in activity during attention-demanding tasks but increase their activity across multiple forms of complex cognition, many of which are linked to memory or abstract thought. Within the cortex, the DMN has been shown to be located in regions furthest away from those contributing to sensory and motor systems. Here, we consider how our knowledge of the topographic characteristics of the DMN can be leveraged to better understand how this network contributes to cognition and behaviour.Regions of the default mode network (DMN) are distributed across the brain and show patterns of activity that have linked them to various different functional domains. In this Perspective, Smallwood and colleagues consider how an examination of the topographic characteristics of the DMN can shed light on its contribution to cognition.
Mapping the subcortical connectivity of the human default mode network
The default mode network (DMN) mediates self-awareness and introspection, core components of human consciousness. Therapies to restore consciousness in patients with severe brain injuries have historically targeted subcortical sites in the brainstem, thalamus, hypothalamus, basal forebrain, and basal ganglia, with the goal of reactivating cortical DMN nodes. However, the subcortical connectivity of the DMN has not been fully mapped, and optimal subcortical targets for therapeutic neuromodulation of consciousness have not been identified. In this work, we created a comprehensive map of DMN subcortical connectivity by combining high-resolution functional and structural datasets with advanced signal processing methods. We analyzed 7 Tesla resting-state functional MRI (rs-fMRI) data from 168 healthy volunteers acquired in the Human Connectome Project. The rs-fMRI blood-oxygen-level-dependent (BOLD) data were temporally synchronized across subjects using the BrainSync algorithm. Cortical and subcortical DMN nodes were jointly analyzed and identified at the group level by applying a novel Nadam-Accelerated SCAlable and Robust (NASCAR) tensor decomposition method to the synchronized dataset. The subcortical connectivity map was then overlaid on a 7 Tesla 100 µm ex vivo MRI dataset for neuroanatomic analysis using automated segmentation of nuclei within the brainstem, thalamus, hypothalamus, basal forebrain, and basal ganglia. We further compared the NASCAR subcortical connectivity map with its counterpart generated from canonical seed-based correlation analyses. The NASCAR method revealed that BOLD signal in the central lateral nucleus of the thalamus and ventral tegmental area of the midbrain is strongly correlated with that of the DMN. In an exploratory analysis, additional subcortical sites in the median and dorsal raphe, lateral hypothalamus, and caudate nuclei were correlated with the cortical DMN. We also found that the putamen and globus pallidus are negatively correlated (i.e., anti-correlated) with the DMN, providing rs-fMRI evidence for the mesocircuit hypothesis of human consciousness, whereby a striatopallidal feedback system modulates anterior forebrain function via disinhibition of the central thalamus. Seed-based analyses yielded similar subcortical DMN connectivity, but the NASCAR result showed stronger contrast and better spatial alignment with dopamine immunostaining data. The DMN subcortical connectivity map identified here advances understanding of the subcortical regions that contribute to human consciousness and can be used to inform the selection of therapeutic targets in clinical trials for patients with disorders of consciousness. [Display omitted]
Effective connectivity in the default mode network is distinctively disrupted in Alzheimer's disease—A simultaneous resting‐state FDG‐PET/fMRI study
A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting‐state functional MRI and FDG‐PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (F4,25 = 5.63, p = 0.002, r2 = 0.47), we found that EC (β = 0.45, p = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD.
The subsystem mechanism of default mode network underlying rumination: A reproducible neuroimaging study
Rumination is a repetitive self-referential thinking style that is often interpreted as an expression of abnormalities of the default mode network (DMN) observed during “resting-state” in major depressive disorder (MDD). Recent evidence has demonstrated that the DMN is not unitary but can be further divided into 3 functionally heterogenous subsystems, although the subsystem mechanistically underlying rumination remains unclear. Due to the unconstrained and indirect correlational nature of previous resting-state fMRI studies on rumination's network underpinnings, a paradigm allowing direct investigation of network interactions during active rumination is needed. Here, with a modified continuous state-like paradigm, we induced healthy participants to ruminate or imagine objective scenarios (distraction, as a control condition) on 3 different MRI scanners. We compared functional connectivities (FC) of the DMN and its 3 subsystems between rumination and distraction states. Results yielded a highly reproducible and dissociated pattern. During rumination, within-DMN FC was generally decreased as compared to the distraction state. At the subsystem level, we found increased FC between the core and medial temporal lobe (MTL) subsystem as well as decreased FC between the core and dorsal medial prefrontal cortex (DMPFC) subsystem and within the MTL subsystem. Finally, subjects’ behavioral measures of rumination and brooding were negatively correlated with FC between the core and DMPFC subsystems. These results suggest active rumination involves enhanced constraint by the core subsystem on the MTL subsystem and decreased coupling between the core and DMPFC subsystem, allowing for more information exchange among those involved DMN components. Furthermore, the reproducibility of our findings provides a rigorous evaluation of their validity and significance.
Functional reorganization of brain networks across the human menstrual cycle
The brain is an endocrine organ, sensitive to the rhythmic changes in sex hormone production that occurs in most mammalian species. In rodents and nonhuman primates, estrogen and progesterone’s impact on the brain is evident across a range of spatiotemporal scales. Yet, the influence of sex hormones on the functional architecture of the human brain is largely unknown. In this dense-sampling, deep phenotyping study, we examine the extent to which endogenous fluctuations in sex hormones alter intrinsic brain networks at rest in a woman who underwent brain imaging and venipuncture for 30 consecutive days. Standardized regression analyses illustrate estrogen and progesterone’s widespread associations with functional connectivity. Time-lagged analyses examined the temporal directionality of these relationships and suggest that cortical network dynamics (particularly in the Default Mode and Dorsal Attention Networks, whose hubs are densely populated with estrogen receptors) are preceded—and perhaps driven—by hormonal fluctuations. A similar pattern of associations was observed in a follow-up study one year later. Together, these results reveal the rhythmic nature in which brain networks reorganize across the human menstrual cycle. Neuroimaging studies that densely sample the individual connectome have begun to transform our understanding of the brain’s functional organization. As these results indicate, taking endocrine factors into account is critical for fully understanding the intrinsic dynamics of the human brain. •Intrinsic fluctuations in sex hormones shape the brain’s functional architecture.•Estradiol facilitates tighter coherence within whole-brain functional networks.•Progesterone has the opposite, reductive effect.•Ovulation (via estradiol) modulates variation in topological network states.•Effects are pronounced in network hubs densely populated with estrogen receptors.
Probing the neural signature of mind wandering with simultaneous fMRI-EEG and pupillometry
Mind wandering reflects the shift in attentional focus from task-related cognition driven by external stimuli toward self-generated and internally-oriented thought processes. Although such task-unrelated thoughts (TUTs) are pervasive and detrimental to task performance, their underlying neural mechanisms are only modestly understood. To investigate TUTs with high spatial and temporal precision, we simultaneously measured fMRI, EEG, and pupillometry in healthy adults while they performed a sustained attention task with experience sampling probes. Features of interest were extracted from each modality at the single-trial level and fed to a support vector machine that was trained on the probe responses. Compared to task-focused attention, the neural signature of TUTs was characterized by weaker activity in the default mode network but elevated activity in its anticorrelated network, stronger functional coupling between these networks, widespread increase in alpha, theta, delta, but not beta, frequency power, predominantly reduced amplitudes of late, but not early, event-related potentials, and larger baseline pupil size. Particularly, information contained in dynamic interactions between large-scale cortical networks was predictive of transient changes in attentional focus above other modalities. Together, our results provide insight into the spatiotemporal dynamics of TUTs and the neural markers that may facilitate their detection.
Network-level macroscale structural connectivity predicts propagation of transcranial magnetic stimulation
Information processing in the brain is mediated by structural white matter pathways and is highly dependent on topological brain properties. Here we combined transcranial magnetic stimulation (TMS) with high-density electroencephalography (EEG) and Diffusion Weighted Imaging (DWI), specifically looking at macroscale connectivity to understand whether regional, network-level or whole-brain structural properties are more responsible for stimulus propagation. Neuronavigated TMS pulses were delivered over two individually defined nodes of the default mode (DMN) and dorsal attention (DAN) networks in a group of healthy subjects, with test-retest reliability assessed 1-month apart. TMS-evoked activity was predicted by the modularity and structural integrity of the stimulated network rather than the targeted region(s) or the whole-brain connectivity, suggesting network-level structural connectivity as more relevant than local and global brain properties in shaping TMS signal propagation. The importance of network structural connectome was unveiled only by evoked activity, but not resting-state data. Future clinicals interventions might enhance target engagement by adopting DWI-guided, network-focused TMS. [Display omitted]
Opposing Changes in the Functional Architecture of Large-Scale Networks in Bipolar Mania and Depression
ObjectiveManic and depressive phases of bipolar disorder (BD) show opposite symptoms in psychomotor, thought, and affective dimensions. Neuronally, these may depend on distinct patterns of alterations in the functional architecture of brain intrinsic activity. Therefore, the study aimed to characterize the spatial and temporal changes of resting-state activity in mania and depression, by investigating the regional homogeneity (ReHo) and degree of centrality (DC), in different frequency bands. MethodsUsing resting-state functional magnetic resonance imaging (fMRI), voxel-wise ReHo and DC were calculated—in the standard frequency band (SFB: 0.01–0.10 Hz), as well as in Slow5 (0.01–0.027 Hz) and Slow4 (0.027–0.073 Hz)—and compared between manic (n = 36), depressed (n = 43), euthymic (n = 29) patients, and healthy controls (n = 112). Finally, clinical correlations were investigated. ResultsMania was mainly characterized by decreased ReHo and DC in Slow4 in the medial prefrontal cortex (as part of the default-mode network [DMN]), which in turn correlated with manic symptomatology. Conversely, depression was mainly characterized by decreased ReHo in SFB in the primary sensory-motor cortex (as part of the sensorimotor network [SMN]), which in turn correlated with depressive symptomatology. ConclusionsOur data show a functional reconfiguration of the spatiotemporal structure of intrinsic brain activity to occur in BD. Mania might be characterized by a predominance of sensorimotor over associative networks, possibly driven by a deficit of the DMN (reflecting in internal thought deficit). Conversely, depression might be characterized by a predominance of associative over sensorimotor networks, possibly driven by a deficit of the SMN (reflecting in psychomotor inhibition).