MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The subsystem mechanism of default mode network underlying rumination: A reproducible neuroimaging study
The subsystem mechanism of default mode network underlying rumination: A reproducible neuroimaging study
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The subsystem mechanism of default mode network underlying rumination: A reproducible neuroimaging study
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The subsystem mechanism of default mode network underlying rumination: A reproducible neuroimaging study
The subsystem mechanism of default mode network underlying rumination: A reproducible neuroimaging study

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The subsystem mechanism of default mode network underlying rumination: A reproducible neuroimaging study
The subsystem mechanism of default mode network underlying rumination: A reproducible neuroimaging study
Journal Article

The subsystem mechanism of default mode network underlying rumination: A reproducible neuroimaging study

2020
Request Book From Autostore and Choose the Collection Method
Overview
Rumination is a repetitive self-referential thinking style that is often interpreted as an expression of abnormalities of the default mode network (DMN) observed during “resting-state” in major depressive disorder (MDD). Recent evidence has demonstrated that the DMN is not unitary but can be further divided into 3 functionally heterogenous subsystems, although the subsystem mechanistically underlying rumination remains unclear. Due to the unconstrained and indirect correlational nature of previous resting-state fMRI studies on rumination's network underpinnings, a paradigm allowing direct investigation of network interactions during active rumination is needed. Here, with a modified continuous state-like paradigm, we induced healthy participants to ruminate or imagine objective scenarios (distraction, as a control condition) on 3 different MRI scanners. We compared functional connectivities (FC) of the DMN and its 3 subsystems between rumination and distraction states. Results yielded a highly reproducible and dissociated pattern. During rumination, within-DMN FC was generally decreased as compared to the distraction state. At the subsystem level, we found increased FC between the core and medial temporal lobe (MTL) subsystem as well as decreased FC between the core and dorsal medial prefrontal cortex (DMPFC) subsystem and within the MTL subsystem. Finally, subjects’ behavioral measures of rumination and brooding were negatively correlated with FC between the core and DMPFC subsystems. These results suggest active rumination involves enhanced constraint by the core subsystem on the MTL subsystem and decreased coupling between the core and DMPFC subsystem, allowing for more information exchange among those involved DMN components. Furthermore, the reproducibility of our findings provides a rigorous evaluation of their validity and significance.