Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
11,178 result(s) for "Diabetes Mellitus, Experimental - blood"
Sort by:
Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes
Maintaining long-term euglycemia after intraportal islet transplantation is hampered by the considerable islet loss in the peri-transplant period attributed to inflammation, ischemia and poor angiogenesis. Here, we show that viable and functional islet organoids can be successfully generated from dissociated islet cells (ICs) and human amniotic epithelial cells (hAECs). Incorporation of hAECs into islet organoids markedly enhances engraftment, viability and graft function in a mouse type 1 diabetes model. Our results demonstrate that the integration of hAECs into islet cell organoids has great potential in the development of cell-based therapies for type 1 diabetes. Engineering of functional mini-organs using this strategy will allow the exploration of more favorable implantation sites, and can be expanded to unlimited (stem-cell-derived or xenogeneic) sources of insulin-producing cells. Islet transplantation is a feasible approach to treat type I diabetes, however inflammation and poor vascularisation impair long-term engraftment. Here the authors show that incorporating human amniotic epithelial cells into islet organoids improves engraftment and function of organoids, through enhanced revascularisation.
Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease
Diabetic kidney disease is a major cause of renal failure that urgently necessitates a breakthrough in disease management. Here we show using untargeted metabolomics that levels of phenyl sulfate, a gut microbiota-derived metabolite, increase with the progression of diabetes in rats overexpressing human uremic toxin transporter SLCO4C1 in the kidney, and are decreased in rats with limited proteinuria. In experimental models of diabetes, phenyl sulfate administration induces albuminuria and podocyte damage. In a diabetic patient cohort, phenyl sulfate levels significantly correlate with basal and predicted 2-year progression of albuminuria in patients with microalbuminuria. Inhibition of tyrosine phenol-lyase, a bacterial enzyme responsible for the synthesis of phenol from dietary tyrosine before it is metabolized into phenyl sulfate in the liver, reduces albuminuria in diabetic mice. Together, our results suggest that phenyl sulfate contributes to albuminuria and could be used as a disease marker and future therapeutic target in diabetic kidney disease. Diabetes is a major cause of kidney disease. Here Kikuchi et al. show that phenol sulfate, a gut microbiota-derived metabolite, is increased in diabetic kidney disease and contributes to the pathology by promoting kidney injury, suggesting phenyl sulfate could be used a marker and therapeutic target for the treatment of diabetic kidney disease.
Dual self-regulated delivery of insulin and glucagon by a hybrid patch
Reduced β-cell function and insulin deficiency are hallmarks of diabetes mellitus, which is often accompanied by the malfunction of glucagon-secreting α-cells. While insulin therapy has been developed to treat insulin deficiency, the on-demand supplementation of glucagon for acute hypoglycemia treatment remains inadequate. Here, we describe a transdermal patch that mimics the inherent counterregulatory effects of β-cells and α-cells for blood glucose management by dynamically releasing insulin or glucagon. The two modules share a copolymerized matrix but comprise different ratios of the key monomers to be “dually responsive” to both hyper- and hypoglycemic conditions. In a type 1 diabetic mouse model, the hybrid patch effectively controls hyperglycemia while minimizing the occurrence of hypoglycemia in the setting of insulin therapy with simulated delayed meal or insulin overdose.
Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection
Objective The present study aims at determining the stability of a popular type 2 diabetes rat model induced by a high-fat diet combined with a low-dose streptozotocin injection. Methods Wistar rats were fed with a high-fat diet for 8 weeks followed by a one-time injection of 25 or 35 mg/kg streptozotocin to induce type 2 diabetes. Then the diabetic rats were fed with regular diet/high-fat diet for 4 weeks. Changes in biochemical parameters were monitored during the 4 weeks. Results All the rats developed more severe dyslipidemia and hepatic dysfunction after streptozotocin injection. The features of 35 mg/kg streptozotocin rats more resembled type 1 diabetes with decreased body weight and blood insulin. Rats with 25 mg/kg streptozotocin followed by normal diet feeding showed normalized blood glucose level and pancreatic structure, indicating that normal diet might help recovery from certain symptoms of type 2 diabetes. In comparison, diabetic rats fed with high-fat diet presented decreased but relatively stable blood glucose level, and this was significantly higher than that of the control group ( P >0.05). Conclusions This model easily recovers with normal diet feeding. A high-fat diet is suggested as the background diet in future pharmacological studies using this model.
Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery
A glucose-responsive “closed-loop” insulin delivery system mimicking the function of pancreatic cells has tremendous potential to improve quality of life and health in diabetics. Here, we report a novel glucose-responsive insulin delivery device using a painless microneedle-array patch (“smart insulin patch”) containing glucose-responsive vesicles (GRVs; with an average diameter of 118 nm), which are loaded with insulin and glucose oxidase (GO ₓ) enzyme. The GRVs are self-assembled from hypoxia-sensitive hyaluronic acid (HS-HA) conjugated with 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazoles through bioreduction under hypoxic conditions. The local hypoxic microenvironment caused by the enzymatic oxidation of glucose in the hyperglycemic state promotes the reduction of HS-HA, which rapidly triggers the dissociation of vesicles and subsequent release of insulin. The smart insulin patch effectively regulated the blood glucose in a mouse model of chemically induced type 1 diabetes. The described work is the first demonstration, to our knowledge, of a synthetic glucose-responsive device using a hypoxia trigger for regulation of insulin release. The faster responsiveness of this approach holds promise in avoiding hyperglycemia and hypoglycemia if translated for human therapy.
Loss of endothelial glucocorticoid receptor accelerates diabetic nephropathy
Endothelial cells play a key role in the regulation of disease. Defective regulation of endothelial cell homeostasis may cause mesenchymal activation of other endothelial cells or neighboring cell types, and in both cases contributes to organ fibrosis. Regulatory control of endothelial cell homeostasis is not well studied. Diabetes accelerates renal fibrosis in mice lacking the endothelial glucocorticoid receptor (GR), compared to control mice. Hypercholesterolemia further enhances severe renal fibrosis. The fibrogenic phenotype in the kidneys of diabetic mice lacking endothelial GR is associated with aberrant cytokine and chemokine reprogramming, augmented Wnt signaling and suppression of fatty acid oxidation. Both neutralization of IL-6 and Wnt inhibition improve kidney fibrosis by mitigating mesenchymal transition. Conditioned media from endothelial cells from diabetic mice lacking endothelial GR stimulate Wnt signaling-dependent epithelial-to-mesenchymal transition in tubular epithelial cells from diabetic controls. These data demonstrate that endothelial GR is an essential antifibrotic molecule in diabetes. The endothelial glucocorticoid receptor plays a key role in the regulation of many diseases, including diabetes. Loss of this receptor results in accelerated renal fibrosis, a heightened inflammatory milieu, augmented Wnt signaling and suppression of fatty acid oxidation in diabetic kidneys.
An orally administered glucose-responsive polymeric complex for high-efficiency and safe delivery of insulin in mice and pigs
Contrary to current insulin formulations, endogenous insulin has direct access to the portal vein, regulating glucose metabolism in the liver with minimal hypoglycaemia. Here we report the synthesis of an amphiphilic diblock copolymer comprising a glucose-responsive positively charged segment and polycarboxybetaine. The mixing of this polymer with insulin facilitates the formation of worm-like micelles, achieving highly efficient absorption by the gastrointestinal tract and the creation of a glucose-responsive reservoir in the liver. Under hyperglycaemic conditions, the polymer triggers a rapid release of insulin, establishing a portal-to-peripheral insulin gradient—similarly to endogenous insulin—for the safe regulation of blood glucose. This insulin formulation exhibits a dose-dependent blood-glucose-regulating effect in a streptozotocin-induced mouse model of type 1 diabetes and controls the blood glucose at normoglycaemia for one day in non-obese diabetic mice. In addition, the formulation demonstrates a blood-glucose-lowering effect for one day in a pig model of type 1 diabetes without observable hypoglycaemia, showing promise for the safe and effective management of type 1 diabetes. Orally administrable and glucose-responsive worm-like micelles have been developed to protect insulin in the gastrointestinal tract, enhance its intestinal absorption, accumulate in the liver and enable efficient and safe blood-glucose management.
Appropriate Insulin Level in Selecting Fortified Diet-Fed, Streptozotocin-Treated Rat Model of Type 2 Diabetes for Anti-Diabetic Studies
Pathophysiological investigation of disease in a suitable animal model is a classical approach towards development of a credible therapeutic strategy. This study examined appropriate insulin level in selecting animal model for type 2 diabetes (T2D) studies. Albino Wistar rats (150-200g) were divided into two groups fed with commercially available normal-diet-feed (NDF) and water or fortified diet feed (FDF) (10g NDF per gram of margarine) with 20% fructose solution as drinking water. After 6 weeks of dietary regimen both groups were divided into 5 sub-groups and injected intraperitoneally with a graded dose of streptozotocin (STZ) (0, 25, 35, 45 & 55mg/kg bw.). The result showed that the FDF-fed rats increased significantly in body weight, basal serum insulin, total cholesterol, triglycerides and blood glucose levels as compared to NDF-fed rats. Ten days post STZ induction, the groups treated with STZ (45 & 55 mg/kg) developed frank hyperglycaemia with < 46.8% serum insulin, a severe deficiency typical of diabetes type 1. The NDF25 and NDF35 groups with 75.7% and 64.4% serum insulin respectively presented relative normoglycemia, whereas the FDF35 (85.8% serum insulin) were notably hyperglycaemia (>300 mg/dL) throughout the 6weeks post diabetes confirmation. These FDF35 rats were sensitive to glibenclamide, metformin and pioglitazone in lowering hyperglycaemia, hypertriglyceridemia and hypercholesterolemia. The hyperglycaemia stability of the FDF35 rats (85.5% insulin) together with their sensitivity to 3 different hypoglycaemic drugs strongly suggests their suitability as a non-genetic model of T2D. Hence the study shows that circulating serum insulin ≥ 85.8% with overt hyperglycaemia may be utilized as the benchmark in selecting rat models for T2D studies.
Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats
Emerging evidence supports a key role for the gut microbiota in metabolic diseases, including type 2 diabetes (T2D) and obesity. The dipeptidyl peptidase-4 inhibitor vildagliptin is highly efficacious in treating T2D. However, whether vildagliptin can alter the gut microbiome is still unclear. This study aimed to identify whether vildagliptin modifies the gut microbiota structure during T2D treatment. Diabetic Sprague-Dawley (SD) rats were induced by a high-fat diet and streptozotocin injection (HFD/STZ). Diabetic rats were orally administered a low dose of vildagliptin (LV, 0.01 g/kg/d vildagliptin), high dose of vildagliptin (HV, 0.02 g/kg/d vildagliptin), or normal saline for 12 weeks. Fasting blood glucose, blood glucose after glucose loading, and serum insulin levels were significantly reduced in the LV and HV groups compared with those in the T2D group. The serum GLP-1 level increased more in the vildagliptin-treated group than in the T2D group. Pyrosequencing of the V3-V4 regions of 16S rRNA genes revealed that vildagliptin significantly altered the gut microbiota. The operational taxonomic units (OTUs) and community richness (Chao1) index were significantly reduced in the vildagliptin and diabetic groups compared with those in the control group. At the phylum level, a higher relative abundance of Bacteroidetes, lower abundance of Firmicutes, and reduced ratio of Fimicutes/Bacteroidetes were observed in the vildagliptin-treated group. Moreover, vildagliptin treatment increased butyrate-producing bacteria, including Baceroides and Erysipelotrichaeae, in the diabetic rats. Moreover, Lachnospira abundance was significantly negatively correlated with fasting blood glucose levels. In conclusion, vildagliptin treatment could benefit the communities of the gut microbiota.
Berberine Improves Glucose Metabolism in Diabetic Rats by Inhibition of Hepatic Gluconeogenesis
Berberine (BBR) is a compound originally identified in a Chinese herbal medicine Huanglian (Coptis chinensis French). It improves glucose metabolism in type 2 diabetic patients. The mechanisms involve in activation of adenosine monophosphate activated protein kinase (AMPK) and improvement of insulin sensitivity. However, it is not clear if BBR reduces blood glucose through other mechanism. In this study, we addressed this issue by examining liver response to BBR in diabetic rats, in which hyperglycemia was induced in Sprague-Dawley rats by high fat diet. We observed that BBR decreased fasting glucose significantly. Gluconeogenic genes, Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase), were decreased in liver by BBR. Hepatic steatosis was also reduced by BBR and expression of fatty acid synthase (FAS) was inhibited in liver. Activities of transcription factors including Forkhead transcription factor O1 (FoxO1), sterol regulatory element-binding protein 1c (SREBP1) and carbohydrate responsive element-binding protein (ChREBP) were decreased. Insulin signaling pathway was not altered in the liver. In cultured hepatocytes, BBR inhibited oxygen consumption and reduced intracellular adenosine triphosphate (ATP) level. The data suggest that BBR improves fasting blood glucose by direct inhibition of gluconeogenesis in liver. This activity is not dependent on insulin action. The gluconeogenic inhibition is likely a result of mitochondria inhibition by BBR. The observation supports that BBR improves glucose metabolism through an insulin-independent pathway.