Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
83 result(s) for "Dimethylamines - analysis"
Sort by:
Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules
Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions.
A Pre-Column Derivatization Method for the HPLC-FLD Determination of Dimethyl and Diethyl Amine in Pharmaceuticals
In recent years, the detection of nitrosamine precursors has become an important issue for regulatory authorities such as the European Medicines Agency (EMA) and the Food and Drug Administration (FDA). The present study provides a pre-column derivatization method for the analysis of dimethylamine (DMA) and diethylamine (DEA) in pharmaceutical products using HPLC and a fluorescence detector. Appropriate chromatographic parameters, including mobile phase composition (organic solvent, buffer, pH), elution type, flow rate, temperature, and λexcitation/emission, were investigated. Analysis was performed at λexcitation = 450 nm and λemission = 540 nm on a C18 column (at 40 °C) using gradient elution as a mobile phase with Eluent A: Phosphoric Acid Buffer (20 mM, pH = 2.8) and Eluent B: methanol, with a flow of 0.8 mL/min. The method was validated according to ICH specifications in terms of linearity (0.5–10 ng/mL for DMA and 5–100 ng/mL for DEA), specificity, and robustness, as well as repeatability, intermediate precision (%RSD < 2.9), and accuracy (% recovery 98.2–102.0%). The derivatization process was optimized using the “Crossed D-Optimal” experimental design procedure, where one mixture component was cross-correlated with two factors. The stability of the samples was studied over a period of one month. To process the samples (pharmaceuticals), various purification techniques were tried using solid/liquid or liquid/liquid extraction with dichloromethane. Finally, a straightforward solid-phase extraction (SPE, C18) method was chosen prior to derivatization. The method was successfully applied, since the extraction recoveries were >81.6% for DMA (0.5 ppm) and >81.1% for DEA (5 ppm). Based on the results obtained and the available literature, the scientific community seeks, by proposing flexible analytical methods, to delimit the problem of nitrosamines.
Single-particle speciation of alkylamines in ambient aerosol at five European sites
Alkylamines are associated with both natural and anthropogenic sources and have been detected in ambient aerosol in a variety of environments. However, little is known about the ubiquity or relative abundance of these species in Europe. In this work, ambient single-particle mass spectra collected at five sampling sites across Europe have been analysed for their alkylamine content. The aerosol time-of-flight mass spectrometer (ATOFMS) data used were collected in Ireland (Cork), France (Paris, Dunkirk and Corsica) and Switzerland (Zurich) between 2008 and 2013. Each dataset was queried for mass spectral marker ions associated with the following ambient alkylamines: dimethylamine (DMA), trimethylamine (TMA), diethylamine (DEA), triethylamine (TEA), dipropylamine (DPA) and tripropylamine (TPA). The fraction of ambient particles that contained detectable alkylamines ranged from 1 to 17 % depending on location, with the highest fractions observed in Paris and Zurich in the winter months. The lowest fractions were observed at coastal sites, where the influence of animal husbandry-related alkylamine emissions is also expected to be lowest. TMA was the most ubiquitous particle phase alkylamine detected and was observed at all locations. Alkylamines were found to be internally mixed with both sulphate and nitrate for each dataset, suggesting that aminium salt formation may be important at all sites investigated. Interestingly, in Corsica, all alkylamine particles detected were also found to be internally mixed with methanesulphonic acid (MSA), indicating that aminium methanesulphonate salts may represent a component of marine ambient aerosol in the summer months. Internal mixing of alkylamines with sea salt was not observed, however. Alkylamine-containing particle composition was found to be reasonably homogeneous at each location, with the exception of the Corsica and Dunkirk sites, where two and four distinct mixing states were observed, respectively.
Dissipation and Residues of 2,4-d-dimethylammonium in Wheat and Soil
The environmental behavior of 720 g/L 2,4-d-dimethylammonium AS under wheat field conditions was studied in detail. The dissipation behaviors of 2,4-d-dimethylammonium in wheat and soil were fitted to first-order kinetic equation (C = C ₀ e ⁻λt ). But different experimental points and years have different initial deposits and half-lives (T ₁/₂). After applying 720 g/L 2,4-d-dimethylammonium AS at recommended dosage and 1.5-fold recommended dosage during 3-4 leaf stage, the residues of 2,4-d-dimethylammonium in wheat plant, wheat grain and soil were all lower than 0.02 mg/kg. The obtained results suggested that, it is safety for application at the recommended dosage during 3-4 leaf stage to control weeds in wheat field.
Rapid sulfuric acid–dimethylamine nucleation enhanced by nitric acid in polluted regions
Recent research [Wang et al., Nature 581, 184–189 (2020)] indicates nitric acid (NA) can participate in sulfuric acid (SA)–ammonia (NH₂) nucleation in the clean and cold upper free troposphere, whereas NA exhibits no obvious effects at the boundary layer with relatively high temperatures. Herein, considering that an SA–dimethylamine (DMA) nucleation mechanism was detected inmegacities [Yao et al., Science 361, 278–281 (2018)], the roles of NA in SA-DMA nucleation are investigated. Different from SA-NH₂ nucleation, we found that NA can enhance SA-DMA–based particle formation rates in the polluted atmospheric boundary layer, such as Beijing in winter, with the enhancement up to 80-fold. Moreover, we found that NA can promote the number concentrations of nucleation clusters (up to 27-fold) and contribute 76% of cluster formation pathways at 280 K. The enhancements on particle formation by NA are critical for particulate pollution in the polluted boundary layer with relatively high NA and DMA concentrations.
Diurnal rhythms in the human urine metabolome during sleep and total sleep deprivation
Understanding how metabolite levels change over the 24 hour day is of crucial importance for clinical and epidemiological studies. Additionally, the association between sleep deprivation and metabolic disorders such as diabetes and obesity requires investigation into the links between sleep and metabolism. Here, we characterise time-of-day variation and the effects of sleep deprivation on urinary metabolite profiles. Healthy male participants (n = 15) completed an in-laboratory study comprising one 24 h sleep/wake cycle prior to 24 h of continual wakefulness under highly controlled environmental conditions. Urine samples were collected over set 2–8 h intervals and analysed by 1 H NMR spectroscopy. Significant changes were observed with respect to both time of day and sleep deprivation. Of 32 identified metabolites, 7 (22%) exhibited cosine rhythmicity over at least one 24 h period; 5 exhibiting a cosine rhythm on both days. Eight metabolites significantly increased during sleep deprivation compared with sleep (taurine, formate, citrate, 3-indoxyl sulfate, carnitine, 3-hydroxyisobutyrate, TMAO and acetate) and 8 significantly decreased (dimethylamine, 4-DTA, creatinine, ascorbate, 2-hydroxyisobutyrate, allantoin, 4-DEA, 4-hydroxyphenylacetate). These data indicate that sampling time, the presence or absence of sleep and the response to sleep deprivation are highly relevant when identifying biomarkers in urinary metabolic profiling studies.
Environmental pesticide exposure and non-Hodgkin lymphoma survival: a population-based study
Background There is evidence indicating that pesticide exposure is a risk factor for non-Hodgkin lymphoma (NHL) development. However, the association between pesticide exposure and NHL survival is not well-established. Methods Using the California Cancer Registry, we identified patients with a first primary diagnosis of NHL from 2010 to 2016 and linked these patients with CalEnviroScreen 3.0 to obtain production agriculture pesticide exposure to 70 chemicals from the state-mandated Pesticide Use Reporting (PUR) by census tract from 2012 to 2014. In addition, data from PUR was integrated into a geographic information system that employs land-use data to estimate cumulative exposure to specific pesticides previously associated with NHL (glyphosate, organophosphorus, carbamate, phenoxyherbicide, and 2,4-dimethylamine salt) between 10 years prior up to 1 year after NHL diagnosis. Multivariable Cox proportional hazards regression models were used to evaluate the association between total pesticide exposure from CalEnviroScreen 3.0 and individual pesticide exposure from geographic land use data and lymphoma-specific and overall survival. Results Among 35,808 NHL patients identified, 44.2% were exposed to pesticide in their census tract of residence. Glyphosate, organophosphorus, carbamate, phenoxyherbicide, and 2,4-dimethylamine salt exposure was observed in 34.1%, 26.0%, 10.6%, 14.0%, and 12.8% of NHL patients, respectively. Total pesticide exposure at the time of diagnosis was not associated with lymphoma-specific or overall survival. In addition, no association was consistently found between glyphosate, organophosphorus, carbamate, phenoxyherbicide, and 2,4 dimethylamine salt exposure and lymphoma-specific or overall survival. Conclusions Although we found no consistent associations between agricultural pesticide exposure at the neighborhood level and worse survival, these results provide a platform for designing future studies to determine the association between pesticide and NHL.
Pancreatic cell tracing, lineage tagging and targeted genetic manipulations in multiple cell types using pancreatic ductal infusion of adeno-associated viral vectors and/or cell-tagging dyes
Pancreatic ductal infusion enables the delivery of dyes or viruses directly to specific pancreatic cell types, permitting their manipulation. This manipulation is helpful for the study of diabetes, pancreatitis and pancreatic cancer. Genetic manipulations, with or without lineage tracing for specific pancreatic cell types, are very powerful tools for studying diabetes, pancreatitis and pancreatic cancer. Nevertheless, the use of Cre/ loxP systems to conditionally activate or inactivate the expression of genes in a cell type– and/or temporal-specific manner is not applicable to cell tracing and/or gene manipulations in more than one lineage at a time. Here we report a technique that allows efficient delivery of dyes for cell tagging into the mouse pancreas through the duct system, and that also delivers viruses carrying transgenes or siRNA under a specific promoter. When this technique is applied in genetically modified mice, it enables the investigator to perform either double lineage tracing or cell lineage tracing combined with gene manipulation in a second lineage. The technique requires <40 min.