Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2,230 result(s) for "Duodenum - immunology"
Sort by:
Transcriptomic analysis of intestine following administration of a transglutaminase 2 inhibitor to prevent gluten-induced intestinal damage in celiac disease
Transglutaminase 2 (TG2) plays a pivotal role in the pathogenesis of celiac disease (CeD) by deamidating dietary gluten peptides, which facilitates antigenic presentation and a strong anti-gluten T cell response. Here, we elucidate the molecular mechanisms underlying the efficacy of the TG2 inhibitor ZED1227 by performing transcriptional analysis of duodenal biopsies from individuals with CeD on a long-term gluten-free diet before and after a 6-week gluten challenge combined with 100 mg per day ZED1227 or placebo. At the transcriptome level, orally administered ZED1227 effectively prevented gluten-induced intestinal damage and inflammation, providing molecular-level evidence that TG2 inhibition is an effective strategy for treating CeD. ZED1227 treatment preserved transcriptome signatures associated with mucosal morphology, inflammation, cell differentiation and nutrient absorption to the level of the gluten-free diet group. Nearly half of the gluten-induced gene expression changes in CeD were associated with the epithelial interferon-γ response. Moreover, data suggest that deamidated gluten-induced adaptive immunity is a sufficient step to set the stage for CeD pathogenesis. Our results, with the limited sample size, also suggest that individuals with CeD might benefit from an HLA-DQ2 / HLA-DQ8 stratification based on gene doses to maximally eliminate the interferon-γ-induced mucosal damage triggered by gluten. Viiri and colleagues show that an orally administered transglutaminase 2 inhibitor prevented gluten-induced intestinal damage and inflammation at the transcriptional level.
A lower duodenal immune response is associated with an increase of insulin resistance in patients with morbid obesity
ObjectiveThe intestinal immune response could play an important role in obesity-related comorbidities. We aim to study the profile of duodenal cytokines and chemokines in patients with morbid obesity (MO), its relation with insulin resistance (IR) and the intake of metformin, and with the evolution of MO after sleeve gastrectomy (SG).Research design and methodsDuodenal levels of 24 cytokines and 9 chemokines were analyzed in 14 nonobese and in 54 MO who underwent SG: with lower IR (MO-lower-IR), with higher IR (MO-higher-IR), and with type 2 diabetes treated with metformin (MO-metf-T2DM).ResultsMO-lower-IR had higher levels of cytokines related to Th1, Th2, Th9, Th17, Th22, M1 macrophages, and chemokines involved in the recruitment of macrophages and T-lymphocytes (p < 0.05), and total (CD68 expression) and M1 macrophages (ITGAX expression) (p < 0.05) when compared with nonobese patients, but with a decrease in M2 macrophages (MRC1 expression) (p < 0.05). In MO-higher-IR, these chemokines and cytokines decreased and were similar to those found in nonobese patients. In MO-metf-T2DM, only IL-4 (Th2) and IL-22 (Th22) increased their levels with regard to MO-higher-IR (p < 0.05). In MO-higher-IR and MO-metf-T2DM, there was a decrease of CD68 expression (p < 0.05) while ITGAX and MRC1 were similar with regard to MO-lower-IR. We found an association between CXCL8, TNFβ and IL-2 with the evolution of body mass index (BMI) after SG (p < 0.05).ConclusionsThere is an association between a higher IR and a lower duodenal immune response in MO, with a slight increase in those patients with metformin treatment. Intestinal immune response could be involved in the evolution of BMI after SG.
An acute intake of plant stanol esters alters immune-related pathways in the jejunum of healthy volunteers
Plant sterols and stanols inhibit intestinal cholesterol absorption and consequently lower serum LDL-cholesterol (LDL-C) concentrations. The underlying mechanisms are not yet known. In vitro and animal studies have suggested that changes in intestinal sterol metabolism are attributed to the LDL-C-lowering effects of plant stanol esters. However, similar studies in human subjects are lacking. Therefore, we examined the effects of an acute intake of plant stanol esters on gene expression profiles of the upper small intestine in healthy volunteers. In a double-blind cross-over design, fourteen healthy subjects (eight female and six male; age 21–55 years), with a BMI ranging from 21 to 29 kg/m2, received in random order a shake with or without plant stanol esters (4 g). At 5 h after consumption of the shake, biopsies were taken from the duodenum (around the papilla of Vater) and from the jejunum (20 cm distal from the papilla of Vater). Microarray analysis showed that the expression profiles of genes involved in sterol metabolism were not altered. Surprisingly, the pathways involved in T-cell functions were down-regulated in the jejunum. Furthermore, immunohistochemical analysis showed that the number of CD3 (cluster of differentiation number 3), CD4 (cluster of differentiation number 4) and Foxp3+ (forkhead box P3-positive) cells was reduced in the plant stanol ester condition compared with the control condition, which is in line with the microarray data. The physiological and functional consequences of the plant stanol ester-induced reduction of intestinal T-cell-based immune activity in healthy subjects deserve further investigation.
Regulation of intestinal immunity and tissue repair by enteric glia
Tissue maintenance and repair depend on the integrated activity of multiple cell types 1 . Whereas the contributions of epithelial 2 , 3 , immune 4 , 5 and stromal cells 6 , 7 in intestinal tissue integrity are well understood, the role of intrinsic neuroglia networks remains largely unknown. Here we uncover important roles of enteric glial cells (EGCs) in intestinal homeostasis, immunity and tissue repair. We demonstrate that infection of mice with Heligmosomoides polygyrus leads to enteric gliosis and the upregulation of an interferon gamma (IFNγ) gene signature. IFNγ-dependent gene modules were also induced in EGCs from patients with inflammatory bowel disease 8 . Single-cell transcriptomics analysis of the tunica muscularis showed that glia-specific abrogation of IFNγ signalling leads to tissue-wide activation of pro-inflammatory transcriptional programs. Furthermore, disruption of the IFNγ–EGC signalling axis enhanced the inflammatory and granulomatous response of the tunica muscularis to helminths. Mechanistically, we show that the upregulation of Cxcl10 is an early immediate response of EGCs to IFNγ signalling and provide evidence that this chemokine and the downstream amplification of IFNγ signalling in the tunica muscularis are required for a measured inflammatory response to helminths and resolution of the granulomatous pathology. Our study demonstrates that IFNγ signalling in enteric glia is central to intestinal homeostasis and reveals critical roles of the IFNγ–EGC–CXCL10 axis in immune response and tissue repair after infectious challenge. Enteric glial cells have tissue-wide immunoregulatory roles through the upregulation of IFNγ-dependent genes both at steady state and after parasite infection, promoting immune homeostasis and CXCL10-mediated tissue repair after pathogen-induced intestinal damage in mice.
A human autoimmune organoid model reveals IL-7 function in coeliac disease
In vitro models of autoimmunity are constrained by an inability to culture affected epithelium alongside the complex tissue-resident immune microenvironment. Coeliac disease (CeD) is an autoimmune disease in which dietary gluten-derived peptides bind to the major histocompatibility complex (MHC) class II human leukocyte antigen molecules (HLA)-DQ2 or HLA-DQ8 to initiate immune-mediated duodenal mucosal injury 1 – 4 . Here, we generated air–liquid interface (ALI) duodenal organoids from intact fragments of endoscopic biopsies that preserve epithelium alongside native mesenchyme and tissue-resident immune cells as a unit without requiring reconstitution. The immune diversity of ALI organoids spanned T cells, B and plasma cells, natural killer (NK) cells and myeloid cells, with extensive T-cell and B-cell receptor repertoires. HLA-DQ2.5-restricted gluten peptides selectively instigated epithelial destruction in HLA-DQ2.5-expressing organoids derived from CeD patients, and this was antagonized by blocking MHC-II or NKG2C/D. Gluten epitopes stimulated a CeD organoid immune network response in lymphoid and myeloid subsets alongside anti-transglutaminase 2 (TG2) autoantibody production. Functional studies in CeD organoids revealed that interleukin-7 (IL-7) is a gluten-inducible pathogenic modulator that regulates CD8 + T-cell NKG2C/D expression and is necessary and sufficient for epithelial destruction. Furthermore, endogenous IL-7 was markedly upregulated in patient biopsies from active CeD compared with remission disease from gluten-free diets, predominantly in lamina propria mesenchyme. By preserving the epithelium alongside diverse immune populations, this human in vitro CeD model recapitulates gluten-dependent pathology, enables mechanistic investigation and establishes a proof of principle for the organoid modelling of autoimmunity. A human in vitro model of coeliac disease comprising duodenal organoids that maintain both epithelium and an immune microenvironment finds a previously unsuspected role for IL-7 in gluten-induced epithelial destruction.
Novel concepts in the pathophysiology and treatment of functional dyspepsia
Emerging data increasingly point towards the duodenum as a key region underlying the pathophysiology of functional dyspepsia (FD), one of the most prevalent functional GI disorders. The duodenum plays a major role in the control and coordination of gastroduodenal function. Impaired duodenal mucosal integrity and low-grade inflammation have been associated with altered neuronal signalling and systemic immune activation, and these alterations may ultimately lead to dyspeptic symptoms. Likely luminal candidates inducing the duodenal barrier defect include acid, bile, the microbiota and food antigens although no causal association with symptoms has been convincingly demonstrated. Recognition of duodenal pathology in FD will hopefully lead to the discovery of new biomarkers and therapeutic targets, allowing biologically targeted rather than symptom-based therapy. In this review, we summarise the recent advances in the diagnosis and treatment of FD with a focus on the duodenum.
Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2
Microbe-host interactions are generally homeostatic, but when dysfunctional, they canincite food sensitivities and chronic diseases. Celiac disease (CeD) is a food sensitivitycharacterized by a breakdown of oral tolerance to gluten proteins in genetically predisposedindividuals, although the underlying mechanisms are incompletely understood. Here weshow that duodenal biopsies from patients with active CeD have increased proteolyticactivity against gluten substrates that correlates with increased Proteobacteria abundance,includingPseudomonas. UsingPseudomonas aeruginosaproducing elastase as a model, weshow gluten-independent, PAR-2 mediated upregulation of inflammatory pathways inC57BL/6 mice without villus blunting. In mice expressing CeD risk genes,P. aeruginosaelastase synergizes with gluten to induce more severe inflammation that is associated withmoderate villus blunting. These results demonstrate that proteases expressed by opportu-nistic pathogens impact host immune responses that are relevant to the development of food sensitivities, independently of the trigger antigen.
Compartmentalized gut lymph node drainage dictates adaptive immune responses
The intestinal immune system has the challenging task of tolerating foreign nutrients and the commensal microbiome, while excluding or eliminating ingested pathogens. Failure of this balance leads to conditions such as inflammatory bowel diseases, food allergies and invasive gastrointestinal infections 1 . Multiple immune mechanisms are therefore in place to maintain tissue integrity, including balanced generation of effector T (T H ) cells and FOXP3 + regulatory T (pT reg ) cells, which mediate resistance to pathogens and regulate excessive immune activation, respectively 1 – 4 . The gut-draining lymph nodes (gLNs) are key sites for orchestrating adaptive immunity to luminal perturbations 5 – 7 . However, it is unclear how they simultaneously support tolerogenic and inflammatory reactions. Here we show that gLNs are immunologically specific to the functional gut segment that they drain. Stromal and dendritic cell gene signatures and polarization of T cells against the same luminal antigen differ between gLNs, with the proximal small intestine-draining gLNs preferentially giving rise to tolerogenic responses and the distal gLNs to pro-inflammatory T cell responses. This segregation permitted the targeting of distal gLNs for vaccination and the maintenance of duodenal pT reg cell induction during colonic infection. Conversely, the compartmentalized dichotomy was perturbed by surgical removal of select distal gLNs and duodenal infection, with effects on both lymphoid organ and tissue immune responses. Our findings reveal that the conflict between tolerogenic and inflammatory intestinal responses is in part resolved by discrete gLN drainage, and encourage antigen targeting to specific gut segments for therapeutic immune modulation. Immune responses in the gut and associated draining lymph nodes differ between tolerogenic and inflammatory depending on their anatomical location.
Duodenal Mucosa of Patients With Type 1 Diabetes Shows Distinctive Inflammatory Profile and Microbiota
Increasing evidences suggest a correlation between gut and type 1 diabetes (T1D). The objective of this study is to evaluate the gut inflammatory profile and microbiota in patients with T1D compared with healthy control (CTRL) subjects and patients with celiac disease (CD) as gut inflammatory disease controls. The inflammatory status and microbiome composition were evaluated in biopsies of the duodenal mucosa of patients with T1D (n = 19), in patients with CD (n = 19), and CTRL subjects (n = 16) recruited at San Raffaele Scientific Institute, in Milan, Italy, between 2009 and 2015. Inflammation was evaluated by gene expression study and immunohistochemistry. Microbiome composition was analyzed by 16S ribosomal RNA gene sequencing. An increased expression of CCL13, CCL19, CCL22, CCR2, COX2, IL4R, CD68, PTX3, TNFα, and VEGFA was observed in patients with T1D compared with CTRL subjects and patients with CD. Immunohistochemical analysis confirmed T1D-specific inflammatory status compared with healthy and CD control tissues, mainly characterized by the increase of the monocyte/macrophage lineage infiltration. The T1D duodenal mucosal microbiome results were different from the other groups, with an increase in Firmicutes and Firmicutes/Bacteroidetes ratio and a reduction in Proteobacteria and Bacteroidetes. The expression of genes specific for T1D inflammation was associated with the abundance of specific bacteria in the duodenum. This study shows that duodenal mucosa in T1D presents disease-specific abnormalities in the inflammatory profile and microbiota. Understanding the mechanisms underlying these features is critical to disentangle the complex pathogenesis of T1D and to gain new perspectives for future therapies targeting the intestine.
A Randomized Trial of a Transglutaminase 2 Inhibitor for Celiac Disease
In a phase 2 proof-of-concept trial, patients with celiac disease controlled on a gluten-free diet were assigned to one of three dose levels of ZED1227 (a selective transglutaminase 2 inhibitor) or placebo. Patients were challenged with 3 g of gluten daily for 6 weeks. Comparison of duodenal-biopsy samples between baseline and 6 weeks showed that ZED1227 attenuated gluten-induced mucosal damage.