Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
31
result(s) for
"Endodeoxyribonucleases - classification"
Sort by:
Programmed DNA destruction by miniature CRISPR-Cas14 enzymes
by
Harrington, Lucas B.
,
Kyrpides, Nikos C.
,
Chen, Janice S.
in
Adaptive immunity
,
Adaptive systems
,
Amino acids
2018
CRISPR-Cas9 systems have been causing a revolution in biology. Harrington
et al.
describe the discovery and technological implementation of an additional type of CRISPR system based on an extracompact effector protein, Cas14. Metagenomics data, particularly from uncultivated samples, uncovered the CRISPR-Cas14 systems containing all the components necessary for adaptive immunity in prokaryotes. At half the size of class 2 CRISPR effectors, Cas14 appears to target single-stranded DNA without class 2 sequence restrictions. By leveraging this activity, a fast and high-fidelity nucleic acid detection system enabled detection of single-nucleotide polymorphisms.
Science
, this issue p.
839
Identification, characterization, and technological implementation of additional archaea-derived CRISPR-Cas14 systems are described.
CRISPR-Cas systems provide microbes with adaptive immunity to infectious nucleic acids and are widely employed as genome editing tools. These tools use RNA-guided Cas proteins whose large size (950 to 1400 amino acids) has been considered essential to their specific DNA- or RNA-targeting activities. Here we present a set of CRISPR-Cas systems from uncultivated archaea that contain Cas14, a family of exceptionally compact RNA-guided nucleases (400 to 700 amino acids). Despite their small size, Cas14 proteins are capable of targeted single-stranded DNA (ssDNA) cleavage without restrictive sequence requirements. Moreover, target recognition by Cas14 triggers nonspecific cutting of ssDNA molecules, an activity that enables high-fidelity single-nucleotide polymorphism genotyping (Cas14-DETECTR). Metagenomic data show that multiple CRISPR-Cas14 systems evolved independently and suggest a potential evolutionary origin of single-effector CRISPR-based adaptive immunity.
Journal Article
Characterization of a thermostable Cas13 enzyme for one-pot detection of SARS-CoV-2
by
Zheng, Cheng
,
Alhamlan, Fatimah
,
Masson, Mauricio Lopez-Portillo
in
Applied Biological Sciences
,
Bacterial Proteins - chemistry
,
Bacterial Proteins - classification
2022
Type VI CRISPR-Cas systems have been repurposed for various applications such as gene knockdown, viral interference, and diagnostics. However, the identification and characterization of thermophilic orthologs will expand and unlock the potential of diverse biotechnological applications. Herein, we identified and characterized a thermostable ortholog of the Cas13a family from the thermophilic organism Thermoclostridium caenicola (TccCas13a). We show that TccCas13a has a close phylogenetic relation to the HheCas13a ortholog from the thermophilic bacterium Herbinix hemicellulosilytica and shares several properties such as thermostability and inability to process its own pre-CRISPR RNA. We demonstrate that TccCas13a possesses robust cis and trans activities at a broad temperature range of 37 to 70 °C, compared with HheCas13a, which has a more limited range and lower activity. We harnessed TccCas13a thermostability to develop a sensitive, robust, rapid, and one-pot assay, named OPTIMA-dx, for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. OPTIMA-dx exhibits no cross-reactivity with other viruses and a limit of detection of 10 copies/μL when using a synthetic SARS-CoV-2 genome. We used OPTIMA-dx for SARS-CoV-2 detection in clinical samples, and our assay showed 95% sensitivity and 100% specificity compared with qRT-PCR. Furthermore, we demonstrated that OPTIMA-dx is suitable for multiplexed detection and is compatible with the quick extraction protocol. OPTIMA-dx exhibits critical features that enable its use at point of care (POC). Therefore, we developed a mobile phone application to facilitate OPTIMA-dx data collection and sharing of patient sample results. This work demonstrates the power of CRISPR-Cas13 thermostable enzymes in enabling key applications in one-pot POC diagnostics and potentially in transcriptome engineering, editing, and therapies.
Journal Article
Single-strand DNA processing: phylogenomics and sequence diversity of a superfamily of potential prokaryotic HuH endonucleases
by
Chandler, Mick
,
Fichant, Gwennaele
,
Siguier, Patricia
in
Amino Acid Motifs
,
Amino acids
,
Analysis
2018
Background
Some mobile genetic elements target the lagging strand template during DNA replication. Bacterial examples are insertion sequences IS
608
and IS
Dra2
(IS
200
/IS
605
family members). They use obligatory single-stranded circular DNA intermediates for excision and insertion and encode a transposase, TnpA
IS
200
, which recognizes subterminal secondary structures at the insertion sequence ends. Similar secondary structures, Repeated Extragenic Palindromes (REP), are present in many bacterial genomes. TnpA
IS
200
-related proteins, TnpA
REP
, have been identified and could be responsible for REP sequence proliferation. These proteins share a conserved HuH/Tyrosine core domain responsible for catalysis and are involved in processes of ssDNA cleavage and ligation. Our goal is to characterize the diversity of these proteins collectively referred as the TnpA
Y1
family.
Results
A genome-wide analysis of sequences similar to TnpA
IS
200
and TnpA
REP
in prokaryotes revealed a large number of family members with a wide taxonomic distribution. These can be arranged into three distinct classes and 12 subclasses based on sequence similarity. One subclass includes sequences similar to TnpA
IS
200
. Proteins from other subclasses are not associated with typical insertion sequence features. These are characterized by specific additional domains possibly involved in protein/DNA or protein/protein interactions. Their genes are found in more than 25% of species analyzed. They exhibit a patchy taxonomic distribution consistent with dissemination by horizontal gene transfers followed by loss. The
tnpA
REP
genes of five subclasses are flanked by typical REP sequences in a REPtron-like arrangement. Four distinct REP types were characterized with a subclass specific distribution. Other subclasses are not associated with REP sequences but have a large conserved domain located in C-terminal end of their sequence. This unexpected diversity suggests that, while most likely involved in processing single-strand DNA, proteins from different subfamilies may play a number of different roles.
Conclusions
We established a detailed classification of TnpA
Y1
proteins, consolidated by the analysis of the conserved core domains and the characterization of additional domains. The data obtained illustrate the unexpected diversity of the TnpA
Y1
family and provide a strong framework for future evolutionary and functional studies. By their potential function in ssDNA editing, they may confer adaptive responses to host cell physiology and metabolism.
Journal Article
A new class of uracil-DNA glycosylases related to human thymine-DNA glycosylase
by
Jiricny, Josef
,
Gallinari, Paola
in
Amino Acid Sequence
,
Animals
,
Biological and medical sciences
1996
MISPAIRS in DNA of guanine with uracil and thymine can arise as a result of deamination of cytosine and 5-methylcytosine, respectively. In humans such mispairs are removed by thymine-DNA glycosylase (TDG)
1–3
. By deleting the carboxy and amino termini of this enzyme we have identified a core region capable of processing G/U but not G/T mispairs. We have further identified two bacterial proteins with strong sequence homology to this core and shown that the homologue from
Escherichia coli
(dsUDG) can remove uracil from G/U mispairs. This enzyme is likely to act as a back-up to the highly efficient and abundant enzyme uracil-DNA glycosylase (UDG) which is found in most organisms. Pupating insects have been reported to lack UDG activity
4
, but we have identified an enzyme similar to dsUDG in cell lines from three different insect species. These data imply the existence of a family of double-strand-specific uracil-DNA glycosylases which, although they are subservient to UDG in most organisms, may constitute the first line of defence against the mutagenic effects of cytosine deamination in insects.
Journal Article
Crystal structure of NaeI-an evolutionary bridge between DNA endonuclease and topoisomerase
by
Chen, Yongquan
,
Topal, Michael D.
,
Luo, Feng
in
Amino Acid Sequence
,
Amino acids
,
Bacterial Proteins - chemistry
2000
Nae
I is transformed from DNA endonuclease to DNA topoisomerase and recombinase by a single amino acid substitution. The crystal structure of
Nae
I was solved at 2.3 Å resolution and shows that
Nae
I is a dimeric molecule with two domains per monomer. Each domain contains one potential DNA recognition motif corresponding to either endonuclease or topoisomerase activity. The N‐terminal domain core folds like the other type II restriction endonucleases as well as λ‐exonuclease and the DNA repair enzymes MutH and Vsr, implying a common evolutionary origin and catalytic mechanism. The C‐terminal domain contains a catabolite activator protein (CAP) motif present in many DNA‐binding proteins, including the type IA and type II topoisomerases. Thus, the
Nae
I structure implies that DNA processing enzymes evolved from a few common ancestors.
Nae
I may be an evolutionary bridge between endonuclease and DNA processing enzymes.
Journal Article
diversity of conjugative relaxases and its application in plasmid classification
by
Francia, María Victoria
,
Garcillán-Barcia, María Pilar
,
de la Cruz, Fernando
in
Bacteria - genetics
,
Bacteria - metabolism
,
bacterial conjugation
2009
Bacterial conjugation is an efficient and sophisticated mechanism of DNA transfer among bacteria. While mobilizable plasmids only encode a minimal MOB machinery that allows them to be transported by other plasmids, conjugative plasmids encode a complete set of transfer genes (MOB+T4SS). The only essential ingredient of the MOB machinery is the relaxase, the protein that initiates and terminates conjugative DNA processing. In this review we compared the sequences and properties of the relaxase proteins contained in gene sequence databases. Proteins were arranged in families and phylogenetic trees constructed from the family alignments. This allowed the classification of conjugative transfer systems in six MOB families: MOBF, MOBH, MOBQ, MOBC, MOBP and MOBV . The main characteristics of each family were reviewed. The phylogenetic relationships of the coupling proteins were also analysed and resulted in phylogenies congruent to those of the cognate relaxases. We propose that the sequences of plasmid relaxases can be used for plasmid classification. We hope our effort will provide researchers with a useful tool for further mining and analysing the plasmid universe both experimentally and in silico.
Journal Article
Discovery of CRISPR-Cas12a clades using a large language model
2025
CRISPR-Cas systems revolutionize life science. Metagenomes contain millions of unknown Cas proteins. Traditional mining relies on protein sequence alignments. In this work, we employ an evolutionary scale language model (ESM) to learn the information beyond sequences. Trained with CRISPR-Cas data, ESM accurately identifies Cas proteins without alignment. Limited experimental data restricts feature prediction, but integrating with machine learning enables
trans
-cleavage activity prediction of uncharacterized Cas12a. We discover 7 undocumented Cas12a subtypes with unique CRISPR loci. Structural analyses reveal 8 subtypes of Cas1, Cas2, and Cas4. Cas12a subtypes display distinct 3D-folds. CryoEM analyses unveil unique RNA interactions with the uncharacterized Cas12a. These proteins show distinct double-strand and single-strand DNA cleavage preferences and broad PAM recognition. Finally, we establish a specific detection strategy for the oncogene SNP without traditional Cas12a PAM. This study highlights the potential of language models in exploring undocumented Cas protein function via gene cluster classification.
Novel Cas protein discovery is vital in CRISPR-Cas technology. Here, authors develop AIL-Scan, an AI-assisted Cas detection strategy using the ESM model, and discover seven unreported Cas12a subtypes with distinct DNA cleavage and PAM recognition, enabling SNP detection and precise gene editing.
Journal Article
Functional Interplay between the 53BP1-Ortholog Rad9 and the Mre11 Complex Regulates Resection, End-Tethering and Repair of a Double-Strand Break
by
De Gregorio, Giuseppe
,
Ferrari, Matteo
,
Haber, James E.
in
Biology and life sciences
,
Cell cycle
,
Cell Cycle Proteins - genetics
2015
The Mre11-Rad50-Xrs2 nuclease complex, together with Sae2, initiates the 5'-to-3' resection of Double-Strand DNA Breaks (DSBs). Extended 3' single stranded DNA filaments can be exposed from a DSB through the redundant activities of the Exo1 nuclease and the Dna2 nuclease with the Sgs1 helicase. In the absence of Sae2, Mre11 binding to a DSB is prolonged, the two DNA ends cannot be kept tethered, and the DSB is not efficiently repaired. Here we show that deletion of the yeast 53BP1-ortholog RAD9 reduces Mre11 binding to a DSB, leading to Rad52 recruitment and efficient DSB end-tethering, through an Sgs1-dependent mechanism. As a consequence, deletion of RAD9 restores DSB repair either in absence of Sae2 or in presence of a nuclease defective MRX complex. We propose that, in cells lacking Sae2, Rad9/53BP1 contributes to keep Mre11 bound to a persistent DSB, protecting it from extensive DNA end resection, which may lead to potentially deleterious DNA deletions and genome rearrangements.
Journal Article
Saccharomyces cerevisiae Rev7 promotes non-homologous end-joining by blocking Mre11 nuclease and Rad50’s ATPase activities and homologous recombination
by
Muniyappa, Kalappa
,
Dhyani, Kshitiza Mohan
,
Badugu, Sugith
in
Adenosine Triphosphatases - genetics
,
Adenosine Triphosphatases - metabolism
,
Amino acids
2024
Recent studies have shown that, in human cancer cells, the tetrameric Shieldin complex (comprising REV7, SHLD1, SHLD2, and SHLD3) facilitates non-homologous end-joining (NHEJ) while blocking homologous recombination (HR). Surprisingly, several eukaryotic species lack SHLD1, SHLD2, and SHLD3 orthologs, suggesting that Rev7 may leverage an alternative mechanism to regulate the double-strand break (DSB) repair pathway choice. Exploring this hypothesis, we discovered that
Saccharomyces cerevisiae
Rev7 physically interacts with the Mre11–Rad50–Xrs2 (MRX) subunits, impedes G-quadruplex DNA synergized HU-induced toxicity, and facilitates NHEJ, while antagonizing HR. Notably, we reveal that a 42-amino acid C-terminal fragment of Rev7 binds to the subunits of MRX complex, protects
rev7∆
cells from G-quadruplex DNA-HU-induced toxicity, and promotes NHEJ by blocking HR. By comparison, the N-terminal HORMA domain, a conserved protein–protein interaction module, was dispensable. We further show that the full-length Rev7 impedes Mre11 nuclease and Rad50’s ATPase activities without affecting the latter’s ATP-binding ability. Combined, these results provide unanticipated insights into the functional interaction between the MRX subunits and Rev7 and highlight a previously unrecognized mechanism by which Rev7 facilitates DSB repair via NHEJ, and attenuation of HR, by blocking Mre11 nuclease and Rad50’s ATPase activities in
S. cerevisiae
.
Journal Article
Probing Individual Environmental Bacteria for Viruses by Using Microfluidic Digital PCR
by
Ottesen, Elizabeth A.
,
Tadmor, Arbel D.
,
Leadbetter, Jared R.
in
Alleles
,
Amino Acid Sequence
,
Animals
2011
Viruses may very well be the most abundant biological entities on the planet. Yet neither metagenomic studies nor classical phage isolation techniques have shed much light on the identity of the hosts of most viruses. We used a microfluidic digital polymerase chain reaction (PCR) approach to physically link single bacterial cells harvested from a natural environment with a viral marker gene. When we implemented this technique on the microbial community residing in the termite hindgut, we found genus-wide infection patterns displaying remarkable intragenus selectivity. Viral marker allelic diversity revealed restricted mixing of alleles between hosts, indicating limited lateral gene transfer of these alleles despite host proximity. Our approach does not require culturing hosts or viruses and provides a method for examining virus-bacterium interactions in many environments.
Journal Article