Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
14,086
result(s) for
"Enzyme Stability"
Sort by:
A Proteolytic Regulator Controlling Chalcone Synthase Stability and Flavonoid Biosynthesis in Arabidopsis
by
Abrahan, Carolina
,
Colquhoun, Thomas A.
,
Liu, Chang-Jun
in
Acyltransferases - genetics
,
Acyltransferases - metabolism
,
Arabidopsis
2017
Flavonoids represent a large family of specialized metabolites involved in plant growth, development, and adaptation. Chalcone synthase (CHS) catalyzes the first step of flavonoid biosynthesis by directing carbon flux from general phenylpropanoid metabolism to flavonoid pathway. Despite extensive characterization of its function and transcriptional regulation, the molecular basis governing its posttranslational modification is enigmatic. Here, we report the discovery of a proteolytic regulator of CHS, namely, KFBCHS, a Kelch domain-containing F-box protein in Arabidopsis thaliana. KFBCHS physically interacts with CHS and specifically mediates its ubiquitination and degradation. KFBCHS
exhibits developmental expression patterns in Arabidopsis leaves, stems, and siliques and strongly responds to the dark-to-light (or the light-to-dark) switch, the blue, red, and far-red light signals, and UV-B irradiation. Alteration of KFBCHS
expression negatively correlates to the cellular concentration of CHS and the production of flavonoids. Our study suggests that KFBCHS serves as a crucial negative regulator, via mediating CHS degradation, coordinately controlling flavonoid biosynthesis in response to the developmental cues and environmental stimuli.
Journal Article
Capturing the mutational landscape of the beta-lactamase TEM-1
by
Glodt, Jérémy
,
Poulain, Julie
,
Gros, Pierre-Alexis
in
Active sites
,
Adaptation, Physiological - genetics
,
Algorithms
2013
Adaptation proceeds through the selection of mutations. The distribution of mutant fitness effect and the forces shaping this distribution are therefore keys to predict the evolutionary fate of organisms and their constituents such as enzymes. Here, by producing and sequencing a comprehensive collection of 10,000 mutants, we explore the mutational landscape of one enzyme involved in the spread of antibiotic resistance, the beta-lactamase TEM-1. We measured mutation impact on the enzyme activity through the estimation of amoxicillin minimum inhibitory concentration on a subset of 990 mutants carrying a unique missense mutation, representing 64% of possible amino acid changes in that protein reachable by point mutation. We established that mutation type, solvent accessibility of residues, and the predicted effect of mutations on protein stability primarily determined alone or in combination changes in minimum inhibitory concentration of mutants. Moreover, we were able to capture the drastic modification of the mutational landscape induced by a single stabilizing point mutation (M182T) by a simple model of protein stability. This work thereby provides an integrated framework to study mutation effects and a tool to understand/define better the epistatic interactions.
Journal Article
Effect of Concentrated Salts Solutions on the Stability of Immobilized Enzymes: Influence of Inactivation Conditions and Immobilization Protocol
by
Bavandi, Hossein
,
Arana-Peña, Sara
,
Carballares, Diego
in
Catalase - chemistry
,
enzyme stability
,
Enzyme Stability - drug effects
2021
This paper aims to investigate the effects of some salts (NaCl, (NH4)2SO4 and Na2SO4) at pH 5.0, 7.0 and 9.0 on the stability of 13 different immobilized enzymes: five lipases, three proteases, two glycosidases, and one laccase, penicillin G acylase and catalase. The enzymes were immobilized to prevent their aggregation. Lipases were immobilized via interfacial activation on octyl agarose or on glutaraldehyde-amino agarose beads, proteases on glyoxyl agarose or glutaraldehyde-amino agarose beads. The use of high concentrations of salts usually has some effects on enzyme stability, but the intensity and nature of these effects depends on the inactivation pH, nature and concentration of the salt, enzyme and immobilization protocol. The same salt can be a stabilizing or a destabilizing agent for a specific enzyme depending on its concentration, inactivation pH and immobilization protocol. Using lipases, (NH4)2SO4 generally permits the highest stabilities (although this is not a universal rule), but using the other enzymes this salt is in many instances a destabilizing agent. At pH 9.0, it is more likely to find a salt destabilizing effect than at pH 7.0. Results confirm the difficulty of foreseeing the effect of high concentrations of salts in a specific immobilized enzyme.
Journal Article
Experimental evidence for the thermophilicity of ancestral life
by
Akanuma, Satoshi
,
Tanokura, Masaru
,
Nakajima, Yoshiki
in
Ambient temperature
,
Amino Acid Sequence
,
Amino acids
2013
Theoretical studies have focused on the environmental temperature of the universal common ancestor of life with conflicting conclusions. Here we provide experimental support for the existence of a thermophilic universal common ancestor. We present the thermal stabilities and catalytic efficiencies of nucleoside diphosphate kinases (NDK), designed using the information contained in predictive phylogenetic trees, that seem to represent the last common ancestors of Archaea and of Bacteria. These enzymes display extreme thermal stabilities, suggesting thermophilic ancestries for Archaea and Bacteria. The results are robust to the uncertainties associated with the sequence predictions and to the tree topologies used to infer the ancestral sequences. Moreover, mutagenesis experiments suggest that the universal ancestor also possessed a very thermostable NDK. Because, as we show, the stability of an NDK is directly related to the environmental temperature of its host organism, our results indicate that the last common ancestor of extant life was a thermophile that flourished at a very high temperature.
Journal Article
Computational Analysis of Thermal Adaptation in Extremophilic Chitinases: The Achilles’ Heel in Protein Structure and Industrial Utilization
by
Hossain, Md. Abir
,
Guerriero, Gea
,
Hausman, Jean-Francois
in
Amino Acid Sequence
,
Amino Acid Sequence - genetics
,
Analytical Chemistry
2021
Understanding protein stability is critical for the application of enzymes in biotechnological processes. The structural basis for the stability of thermally adapted chitinases has not yet been examined. In this study, the amino acid sequences and X-ray structures of psychrophilic, mesophilic, and hyperthermophilic chitinases were analyzed using computational and molecular dynamics (MD) simulation methods. From the findings, the key features associated with higher stability in mesophilic and thermophilic chitinases were fewer and/or shorter loops, oligomerization, and less flexible surface regions. No consistent trends were observed between stability and amino acid composition, structural features, or electrostatic interactions. Instead, unique elements affecting stability were identified in different chitinases. Notably, hyperthermostable chitinase had a much shorter surface loop compared to psychrophilic and mesophilic homologs, implying that the extended floppy surface region in cold-adapted and mesophilic chitinases may have acted as a “weak link” from where unfolding was initiated. MD simulations confirmed that the prevalence and flexibility of the loops adjacent to the active site were greater in low-temperature-adapted chitinases and may have led to the occlusion of the active site at higher temperatures compared to their thermostable homologs. Following this, loop “hot spots” for stabilizing and destabilizing mutations were also identified. This information is not only useful for the elucidation of the structure–stability relationship, but will be crucial for designing and engineering chitinases to have enhanced thermoactivity and to withstand harsh industrial processing conditions
Journal Article
Stable protease from Bacillus licheniformis-MA1 strain: statistical production optimization, kinetic and thermodynamic characterization, and application in silver recovery from used X-ray films
by
Abdella, Mohamed A. A
,
Ahmed, Samia A
in
Activation energy
,
Agricultural wastes
,
Alkaline protease
2025
BackgroundAlkaline proteases are useful enzymes for various industrial applications as bio-additives in detergents and in the recovery of silver from used X-ray films. Therefore, many strategies were used to increase enzyme production and reduce production costs by using microbial cultures, using agro-industrial waste, and improving growth conditions via statistical methods. The enzyme kinetics and thermodynamics were studied as well as its ability to recover silver was also evaluated.ResultsAn alkaline protease suitable for industrial applications was produced by Bacillus licheniformis strain-MA1. The ability of B. licheniformis strain-MA1 to produce protease was optimized using multi-factorial designs (Plackett–Burman and Box–Behnken). Optimization process improved enzyme production by 9.6-fold over that obtained from the original medium. Highest alkaline protease production was reached after 72 h at pH 7.0, 35 °C, and 150 rpm. The protease was maximally active at 50 °C and pH 9.0 with high thermal and pH stability. The protease showed high catalytic efficiency and high affinity toward substrate with low activation energy (Ea). In addition, the thermodynamic parameters of protease enzyme (enthalpy, free energy, and entropy) were also investigated and showed its superior thermal stability. At 70 °C the thermal deactivation constant (kd) was 4.75-fold higher than that at 50 °C. The higher t0.5, D-values, and activation energy for thermal denaturation (Ed) of the protease indicated its higher thermal stability and thus its potential application in industrial processes. The compatibility of the protease with laundry detergents at 40 °C was higher than at 50 °C. In the presence of EDTA, the protease enzyme retained 93.6% of its activity. Furthermore, the crude enzyme successfully hydrolyzed the gelatin layer from X-ray films waste after 1 h enabling recycling and reuse.ConclusionsStable alkaline protease from B. licheniformis strain-MA1 was suitable for some industrial aspects as a bio-additive in detergents and capable of recovering silver from used X-ray.
Journal Article
Aminoacyl tRNA synthetases and their connections to disease
by
Kim, Sunghoon
,
Park, Sang Gyu
,
Schimmel, Paul
in
Amino acids
,
Amino Acyl-tRNA Synthetases - genetics
,
Amino Acyl-tRNA Synthetases - metabolism
2008
Aminoacylation of transfer RNAs establishes the rules of the genetic code. The reactions are catalyzed by an ancient group of 20 enzymes (one for each amino acid) known as aminoacyl tRNA synthetases (AARSs). Surprisingly, the etiology of specific diseases--including cancer, neuronal pathologies, autoimmune disorders, and disrupted metabolic conditions--is connected to specific aminoacyl tRNA synthetases. These connections include heritable mutations in the genes for tRNA synthetases that are causally linked to disease, with both dominant and recessive disease-causing mutations being annotated. Because some disease-causing mutations do not affect aminoacylation activity or apparent enzyme stability, the mutations are believed to affect functions that are distinct from aminoacylation. Examples include enzymes that are secreted as procytokines that, after activation, operate in pathways connected to the immune system or angiogenesis. In addition, within cells, synthetases form multiprotein complexes with each other or with other regulatory factors and in that way control diverse signaling pathways. Although much has been uncovered in recent years, many novel functions, disease connections, and interpathway connections of tRNA synthetases have yet to be worked out.
Journal Article
Introducing a salt bridge into the lipase of Stenotrophomonas maltophilia results in a very large increase in thermal stability
by
Wu, Jian-Ping
,
Zhou, Yong
,
Li, Mu
in
Applied Microbiology
,
Bacteria
,
Bacterial Proteins - chemistry
2015
High thermostability of enzymes is a prerequisite for their biotechnological applications. An organic solvent-tolerant and cold-active lipase, from the Stenotrophomonas maltophilia, was unstable above 40 °C in previous studies. To increase the enzyme stability, possible hydrogen-bond networks were simulated by the introduction of a salt bridge in a highly flexible region of the protein. Compared with the wild-type lipase, a mutant lipase (G165D and F73R) showed a >900-fold improvement in half-life at 50 °C, with the optimal activity-temperature increasing from 35 to 90 °C. Therefore, the hydrogen-bond strategy is a powerful approach for improving enzyme stability through the introduction of a salt bridge.
Journal Article
Efficient Immobilization of Porcine Pancreatic α-Amylase on Amino-Functionalized Magnetite Nanoparticles: Characterization and Stability Evaluation of the Immobilized Enzyme
by
Akhond, M.
,
Pashangeh, Kh
,
Karbalaei-Heidari, H. R.
in
alpha-amylase
,
alpha-Amylases - metabolism
,
Amines - chemistry
2016
The potential of the modified magnetic nanoparticles for covalent immobilization of porcine pancreatic α-amylase has been investigated. The synthesis and immobilization processes were simple and fast. The co-precipitation method was used for synthesis of magnetic iron oxide (Fe
3
O
4
) nanoparticles (NPs) which were subsequently coated with silica through sol–gel reaction. The amino-functionalized NPs were prepared by treating silica-coated NPs with 3-aminopropyltriethoxysilane followed by covalent immobilization of α-amylase by glutaraldehyde. The optimum enzyme concentration and incubation time for immobilization reaction were 150 mg and 4 h, respectively. Upon this immobilization, the α-amylase retained more than 50 % of its initial specific activity. The optimum pH for maximal catalytic activity of the immobilized enzyme was 6.5 at 45 °C. The kinetic studies on the immobilized enzyme and its free counterpart revealed an acceptable change of K
m
and V
max
. The Km values were found as 4 and 2.5 mM for free and immobilized enzymes, respectively. The V
max
values for the free and immobilized enzymes were calculated as 1.75 and 1.03 μmol mg
−1
min
−1
, in order, when starch was used as the substrate. A quick separation of immobilized amylase from reaction mixture was achieved when a magnetically active support was applied. In comparison to the free enzyme, the immobilized enzyme was thermally stable and was reusable for 9 cycles while retaining 68 % of its initial activity.
Journal Article
Carrier-free immobilized enzymes for biocatalysis
by
Roessl, Ulrich
,
Nahálka, Jozef
,
Nidetzky, Bernd
in
Applied Microbiology
,
Biocatalysis
,
Biocatalysis - drug effects
2010
Methods for the preparation of carrier-free insoluble enzymes are reviewed. The technology of cross-linked enzyme aggregates has now been applied to a range of synthetically useful activities. Fusion proteins are also gaining momentum because they allow a relatively selective aggregation or even a specific self-assembly of the desired enzyme activity into insoluble particles in the absence of potentially denaturing chemicals required for precipitation and cross-linking. Recycling of insoluble protein particles for multiple rounds of batchwise reaction has been demonstrated in selected biotransformations. However, for application in a fully continuous biocatalytic process, low resistance to mechanical stress and high compressibility are issues for consideration on carrier-free enzyme particles.
Journal Article