Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
101
result(s) for
"Excitatory Amino Acid Transporter 1 - chemistry"
Sort by:
Structure and allosteric inhibition of excitatory amino acid transporter 1
2017
Human members of the solute carrier 1 (SLC1) family of transporters take up excitatory neurotransmitters in the brain and amino acids in peripheral organs. Dysregulation of the function of SLC1 transporters is associated with neurodegenerative disorders and cancer. Here we present crystal structures of a thermostabilized human SLC1 transporter, the excitatory amino acid transporter 1 (EAAT1), with and without allosteric and competitive inhibitors bound. The structures reveal architectural features of the human transporters, such as intra- and extracellular domains that have potential roles in transport function, regulation by lipids and post-translational modifications. The coordination of the allosteric inhibitor in the structures and the change in the transporter dynamics measured by hydrogen–deuterium exchange mass spectrometry reveal a mechanism of inhibition, in which the transporter is locked in the outward-facing states of the transport cycle. Our results provide insights into the molecular mechanisms underlying the function and pharmacology of human SLC1 transporters.
High-resolution structures of the thermostabilized human excitatory amino acid transporter EAAT1, alone or in association with its substrate or small molecule inhibitors, reveal architectural features of human SLC1 transporters and an allosteric mechanism of inhibition.
Structure of an amino acid transporter
Amino acid transporters of the solute carrier 1 (SLC1) family have been associated with several neurological and metabolic disorders in humans, but information about their structure has been limited to a simpler homologue from an archeal microorganism. Nicolas Reyes and colleagues present several high-resolution structures of the human excitatory amino acid transporter 1 (EAAT1), a key component of glutamatergic synapses, alone or in association with its substrate or small inhibitor molecules. The structures reveal mechanistic determinants that are specific to human SLC1 carriers, such as regulation by lipids or post-translational modifications, and present an allosteric pocket that could aid further drug design. On the basis of these structures, researchers will be able to propose how specific mutations affect EAAT1 transport mechanics at a molecular level and therefore suggest more effective treatment approaches.
Journal Article
Glutamate transporters have a chloride channel with two hydrophobic gates
2021
Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, and its precise control is vital to maintain normal brain function and to prevent excitotoxicity
1
. The removal of extracellular glutamate is achieved by plasma-membrane-bound transporters, which couple glutamate transport to sodium, potassium and pH gradients using an elevator mechanism
2
–
5
. Glutamate transporters also conduct chloride ions by means of a channel-like process that is thermodynamically uncoupled from transport
6
–
8
. However, the molecular mechanisms that enable these dual-function transporters to carry out two seemingly contradictory roles are unknown. Here we report the cryo-electron microscopy structure of a glutamate transporter homologue in an open-channel state, which reveals an aqueous cavity that is formed during the glutamate transport cycle. The functional properties of this cavity, combined with molecular dynamics simulations, reveal it to be an aqueous-accessible chloride permeation pathway that is gated by two hydrophobic regions and is conserved across mammalian and archaeal glutamate transporters. Our findings provide insight into the mechanism by which glutamate transporters support their dual function, and add information that will assist in mapping the complete transport cycle shared by the solute carrier 1A transporter family.
Glutamate transporters conduct chloride ions through an aqueous channel with hydrophobic gates that forms during the glutamate transport cycle.
Journal Article
Molecular Dynamic Simulations Reveal that Water-Soluble QTY-Variants of Glutamate Transporters EAA1, EAA2 and EAA3 Retain the Conformational Characteristics of Native Transporters
by
Karagöl, Taner
,
Karagöl, Alper
,
Zhang, Shuguang
in
Drug interaction
,
Evolutionary conservation
,
Homeostasis
2024
ObjectiveGlutamate transporters play a crucial role in neurotransmitter homeostasis, but studying their structure and function is challenging due to their membrane-bound nature. This study aims to investigate whether water-soluble QTY-variants of glutamate transporters EAA1, EAA2 and EAA3 retain the conformational characteristics and dynamics of native membrane-bound transporters.MethodsMolecular dynamics simulations and comparative genomics were used to analyze the structural dynamics of both native transporters and their QTY-variants. Native transporters were simulated in lipid bilayers, while QTY-variants were simulated in aqueous solution. Lipid distortions, relative solvent accessibilities, and conformational changes were examined. Evolutionary conservation profiles were correlated with structural dynamics. Statistical analyses included multivariate analysis to account for confounding variables.ResultsQTY-variants exhibited similar residue-wise conformational dynamics to their native counterparts, with correlation coefficients of 0.73 and 0.56 for EAA1 and EAA3, respectively (p < 0.001). Hydrophobic interactions of native helices correlated with water interactions of QTY- helices (rs = 0.4753, p < 0.001 for EAA1). QTY-variants underwent conformational changes resembling the outward-to-inward transition of native transporters.ConclusionsWater-soluble QTY-variants retain key structural properties of native glutamate transporters and mimic aspects of native lipid interactions, including conformational flexibility. This research provides valuable insights into the conformational changes and molecular mechanisms of glutamate transport, potentially offering a new approach for studying membrane protein dynamics and drug interactions.
Journal Article
SLC1 glutamate transporters
by
Grewer, Christof
,
Rauen, Thomas
,
Gameiro, Armanda
in
Amino Acid Sequence
,
Animals
,
Biomedical and Life Sciences
2014
The plasma membrane transporters for the neurotransmitter glutamate belong to the solute carrier 1 family. They are secondary active transporters, taking up glutamate into the cell against a substantial concentration gradient. The driving force for concentrative uptake is provided by the cotransport of Na
+
ions and the countertransport of one K
+
in a step independent of the glutamate translocation step. Due to eletrogenicity of transport, the transmembrane potential can also act as a driving force. Glutamate transporters are expressed in many tissues, but are of particular importance in the brain, where they contribute to the termination of excitatory neurotransmission. Glutamate transporters can also run in reverse, resulting in glutamate release from cells. Due to these important physiological functions, glutamate transporter expression and, therefore, the transport rate, are tightly regulated. This review summarizes recent literature on the functional and biophysical properties, structure–function relationships, regulation, physiological significance, and pharmacology of glutamate transporters. Particular emphasis is on the insight from rapid kinetic and electrophysiological studies, transcriptional regulation of transporter expression, and reverse transport and its importance for pathophysiological glutamate release under ischemic conditions.
Journal Article
Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia
by
Long, Robert
,
McCarthy, Shane E.
,
Meltzer, Paul S.
in
Adolescent
,
Adult
,
Adult and adolescent clinical studies
2008
Schizophrenia is a devastating neurodevelopmental disorder whose genetic influences remain elusive. We hypothesize that individually rare structural variants contribute to the illness. Microdeletions and microduplications >100 kilobases were identified by microarray comparative genomic hybridization of genomic DNA from 150 individuals with schizophrenia and 268 ancestry-matched controls. All variants were validated by high-resolution platforms. Novel deletions and duplications of genes were present in 5% of controls versus 15% of cases and 20% of young-onset cases, both highly significant differences. The association was independently replicated in patients with childhood-onset schizophrenia as compared with their parents. Mutations in cases disrupted genes disproportionately from signaling networks controlling neurodevelopment, including neuregulin and glutamate pathways. These results suggest that multiple, individually rare mutations altering genes in neurodevelopmental pathways contribute to schizophrenia.
Journal Article
Impaired K+ binding to glial glutamate transporter EAAT1 in migraine
2017
SLC1A3
encodes the glial glutamate transporter
h
EAAT1, which removes glutamate from the synaptic cleft via stoichiometrically coupled Na
+
-K
+
-H
+
-glutamate transport. In a young man with migraine with aura including hemiplegia, we identified a novel
SLC1A3
mutation that predicts the substitution of a conserved threonine by proline at position 387 (T387P) in
h
EAAT1. To evaluate the functional effects of the novel variant, we expressed the wildtype or mutant
h
EAAT1 in mammalian cells and performed whole-cell patch clamp, fast substrate application, and biochemical analyses. T387P diminishes
h
EAAT1 glutamate uptake rates and reduces the number of
h
EAAT1 in the surface membrane. Whereas
h
EAAT1 anion currents display normal ligand and voltage dependence in cells internally dialyzed with Na
+
-based solution, no anion currents were observed with internal K
+
. Fast substrate application demonstrated that T387P abolishes K
+
-bound retranslocation. Our finding expands the phenotypic spectrum of genetic variation in
SLC1A3
and highlights impaired K
+
binding to
h
EAAT1 as a novel mechanism of glutamate transport dysfunction in human disease.
Journal Article
Consensus designs and thermal stability determinants of a human glutamate transporter
by
Cirri, Erica
,
Canul-Tec, Juan Carlos
,
Reyes, Nicolas
in
Amino Acid Sequence
,
Amino Acid Transport System X-AG - chemistry
,
Amino Acid Transport System X-AG - metabolism
2018
Human excitatory amino acid transporters (EAATs) take up the neurotransmitter glutamate in the brain and are essential to maintain excitatory neurotransmission. Our understanding of the EAATs’ molecular mechanisms has been hampered by the lack of stability of purified protein samples for biophysical analyses. Here, we present approaches based on consensus mutagenesis to obtain thermostable EAAT1 variants that share up to ~95% amino acid identity with the wild type transporters, and remain natively folded and functional. Structural analyses of EAAT1 and the consensus designs using hydrogen-deuterium exchange linked to mass spectrometry show that small and highly cooperative unfolding events at the inter-subunit interface rate-limit their thermal denaturation, while the transport domain unfolds at a later stage in the unfolding pathway. Our findings provide structural insights into the kinetic stability of human glutamate transporters, and introduce general approaches to extend the lifetime of human membrane proteins for biophysical analyses.
Journal Article
A novel mutation in SLC1A3 causes episodic ataxia
2018
Episodic ataxias (EAs) are rare channelopathies characterized by recurrent ataxia and vertigo, having eight subtypes. Mutated genes were found in four of these eight subtypes (EA1, EA2, EA5, and EA6). To date, only four missense mutations in the Solute Carrier Family 1 Member 3 gene (SLC1A3) have been reported to cause EA6. SLC1A3 encodes excitatory amino-acid transporter 1, which is a trimeric transmembrane protein responsible for glutamate transport in the synaptic cleft. In this study, we found a novel missense mutation, c.383T>G (p.Met128Arg) in SLC1A3, in an EA patient by whole-exome sequencing. The modeled structural analysis suggested that p.Met128Arg may affect the hydrophobic transmembrane environment and protein function. Analysis of the pathogenicity of all mutations found in SLC1A3 to date using multiple prediction tools showed some advantage of using the Mendelian Clinically Applicable Pathogenicity (M-CAP) score. Various types of SLC1A3 variants, including nonsense mutations and indels, in the ExAC database suggest that the loss-of-function mechanism by SLC1A3 mutations is unlikely in EA6. The current mutation (p.Med128Arg) presumably has a gain-of-function effect as described in a previous report.
Journal Article
Late-onset episodic ataxia associated with SLC1A3 mutation
by
Choi, Seo Young
,
Kim, Hyang-Sook
,
Shin, Jin-Hong
in
Acetazolamide
,
Acetazolamide - therapeutic use
,
Adult
2017
Episodic ataxia type 6 (EA6) is caused by mutations in SLC1A3 that encodes excitatory amino acid transporter 1 (EAAT1), a glial glutamate transporter. EAAT1 regulates the extent and durations of glutamate-mediated signal by the clearance of glutamate after synaptic release. In addition, EAAT1 also has an anion channel activity that prevents additional glutamate release. We identified a missense mutation in SLC1A3 in a family with EA. The proband exhibited typical EA2-like symptoms such as recurrent ataxia, slurred speech with a duration of several hours, interictal nystagmus and response to acetazolamide, but had late-onset age of sixth decade. Whole-exome sequencing detected a heterozygous c.1177G>A mutation in SLC1A3. This mutation predicted a substitution of isoleucine for a highly conserved valine residue in the seventh transmembrane domain of EAAT1. The mutation was not present in 100 controls, a large panel of in-house genome data and various mutation databases. Most functional prediction scores revealed to be deleterious. Same heterozygous mutation was identified in one clinically affected family member and two asymptomatic members. Our data expand the mutation spectrum of SLC1A3 and the clinical phenotype of EA6.
Journal Article
Substrate transport and anion permeation proceed through distinct pathways in glutamate transporters
by
Torres-Salazar, Delany
,
Bahar, Ivet
,
Amara, Susan G
in
anion channeling
,
Anions - metabolism
,
Aspartate transporter from Pyrococcus horikoshii
2017
Advances in structure-function analyses and computational biology have enabled a deeper understanding of how excitatory amino acid transporters (EAATs) mediate chloride permeation and substrate transport. However, the mechanism of structural coupling between these functions remains to be established. Using a combination of molecular modeling, substituted cysteine accessibility, electrophysiology and glutamate uptake assays, we identified a chloride-channeling conformer, iChS, transiently accessible as EAAT1 reconfigures from substrate/ion-loaded into a substrate-releasing conformer. Opening of the anion permeation path in this iChS is controlled by the elevator-like movement of the substrate-binding core, along with its wall that simultaneously lines the anion permeation path (global); and repacking of a cluster of hydrophobic residues near the extracellular vestibule (local). Moreover, our results demonstrate that stabilization of iChS by chemical modifications favors anion channeling at the expense of substrate transport, suggesting a mutually exclusive regulation mediated by the movement of the flexible wall lining the two regions.
Journal Article