Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Excitatory Amino Acid Transporter 1 - deficiency"
Sort by:
Astroglial Glutamate Transporter Deficiency Increases Synaptic Excitability and Leads to Pathological Repetitive Behaviors in Mice
An increase in the ratio of cellular excitation to inhibition (E/I ratio) has been proposed to underlie the pathogenesis of neuropsychiatric disorders, such as autism spectrum disorders (ASD), obsessive-compulsive disorder (OCD), and Tourette's syndrome (TS). A proper E/I ratio is achieved via factors expressed in neuron and glia. In astrocytes, the glutamate transporter GLT1 is critical for regulating an E/I ratio. However, the role of GLT1 dysfunction in the pathogenesis of neuropsychiatric disorders remains unknown because mice with a complete deficiency of GLT1 exhibited seizures and premature death. Here, we show that astrocyte-specific GLT1 inducible knockout (GLAST(CreERT2/+)/GLT1(flox/flox), iKO) mice exhibit pathological repetitive behaviors including excessive and injurious levels of self-grooming and tic-like head shakes. Electrophysiological studies reveal that excitatory transmission at corticostriatal synapse is normal in a basal state but is increased after repetitive stimulation. Furthermore, treatment with an N-methyl-D-aspartate (NMDA) receptor antagonist memantine ameliorated the pathological repetitive behaviors in iKO mice. These results suggest that astroglial GLT1 has a critical role in controlling the synaptic efficacy at corticostriatal synapses and its dysfunction causes pathological repetitive behaviors.
Ethanol abolishes vigilance-dependent astroglia network activation in mice by inhibiting norepinephrine release
Norepinephrine adjusts sensory processing in cortical networks and gates plasticity enabling adaptive behavior. The actions of norepinephrine are profoundly altered by recreational drugs like ethanol, but the consequences of these changes on distinct targets such as astrocytes, which exhibit norepinephrine-dependent Ca 2+ elevations during vigilance, are not well understood. Using in vivo two-photon imaging, we show that locomotion-induced Ca 2+ elevations in mouse astroglia are profoundly inhibited by ethanol, an effect that can be reversed by enhancing norepinephrine release. Vigilance-dependent astroglial activation is abolished by deletion of α 1A -adrenergic receptor from astroglia, indicating that norepinephrine acts directly on these ubiquitous glial cells. Ethanol reduces vigilance-dependent Ca 2+ transients in noradrenergic terminals, but has little effect on astroglial responsiveness to norepinephrine, suggesting that ethanol suppresses their activation by inhibiting norepinephrine release. Since abolition of astroglia Ca 2+ activation does not affect motor coordination, global suppression of astroglial networks may contribute to the cognitive effects of alcohol intoxication. The effects of norepinephrine on sensory processing in cortical networks are altered by recreational drugs like ethanol. The authors show that ethanol suppresses the activation of astrocytes by inhibiting norepinephrine release which may contribute to the cognitive effects of alcohol intoxication.
Overstimulation of NMDA Receptors Impairs Early Brain Development in vivo
Brains of patients with schizophrenia show both neurodevelopmental and functional deficits that suggest aberrant glutamate neurotransmission. Evidence from both genetic and pharmacological studies suggests that glutamatergic dysfunction, particularly with involvement of NMDARs, plays a critical role in the pathophysiology of schizophrenia. However, how prenatal disturbance of NMDARs leads to schizophrenia-associated developmental defects is largely unknown. Glutamate transporter GLAST/GLT1 double-knockout (DKO) mice carrying the NMDA receptor 1 subunit (NR1)-null mutation were generated. Bouin-fixed and paraffin-embedded embryonic day 16.5 coronal brain sections were stained with hematoxylin, anti-microtubule-associated protein 2 (MAP2), and anti-L1 antibodies to visualize cortical, hippocampal, and olfactory bulb laminar structure, subplate neurons, and axonal projections. NR1 deletion in DKO mice almost completely rescued multiple brain defects including cortical, hippocampal, and olfactory bulb disorganization and defective corticothalamic and thalamocortical axonal projections. Excess glutamatergic signaling in the prenatal stage compromises early brain development via overstimulation of NMDARs.
ASK1 deficiency attenuates neural cell death in GLAST-deficient mice, a model of normal tension glaucoma
Apoptosis signal-regulating kinase 1 (ASK1) is an evolutionarily conserved mitogen-activated protein kinase (MAPK) kinase kinase and has an important role in stress-induced retinal ganglion cell (RGC) apoptosis. In the mammalian retina, glutamate/aspartate transporter (GLAST) is a major glutamate transporter, and the loss of GLAST leads to optic nerve degeneration similar to normal tension glaucoma (NTG). In GLAST −/− mice, the glutathione level in the retina is decreased, suggesting the involvement of oxidative stress in NTG pathogenesis. To test this hypothesis, we examined the histology and visual function of GLAST +/− :ASK1 −/− and GLAST −/− :ASK1 −/− mice by multifocal electroretinograms. ASK1 deficiency protected RGCs and decreased the number of degenerating axons in the optic nerve. Consistent with this finding, visual function was significantly improved in GLAST +/− :ASK1 −/− and GLAST −/− :ASK1 −/− mice compared with GLAST +/− and GLAST −/− mice, respectively. The loss of ASK1 had no effects on the production of glutathione or malondialdehyde in the retina or on the intraocular pressure. Tumor necrosis factor (TNF)-induced activation of p38 MAPK and the production of inducible nitric oxide synthase were suppressed in ASK1-deficient Müller glial cells. In addition, TNF-induced cell death was suppressed in ASK1-deficient RGCs. These results suggest that ASK1 activation is involved in NTG-like pathology in both neural and glial cells and that interrupting ASK1-dependent pathways could be beneficial in the treatment of glaucoma, including NTG.
NMDA receptor subunits have different roles in NMDA-induced neurotoxicity in the retina
Background Loss of retinal ganglion cells (RGCs) is a hallmark of various retinal diseases including glaucoma, retinal ischemia, and diabetic retinopathy. N-methyl-D-aspartate (NMDA)-type glutamate receptor (NMDAR)-mediated excitotoxicity is thought to be an important contributor to RGC death in these diseases. Native NMDARs are heterotetramers that consist of GluN1 and GluN2 subunits, and GluN2 subunits (GluN2A–D) are major determinants of the pharmacological and biophysical properties of NMDARs. All NMDAR subunits are expressed in RGCs in the retina. However, the relative contribution of the different GluN2 subunits to RGC death by excitotoxicity remains unclear. Results GluN2B- and GluN2D-deficiency protected RGCs from NMDA-induced excitotoxic retinal cell death. Pharmacological inhibition of the GluN2B subunit attenuated RGC loss in glutamate aspartate transporter deficient mice. Conclusions Our data suggest that GluN2B- and GluN2D-containing NMDARs play a critical role in NMDA-induced excitotoxic retinal cell death and RGC degeneration in glutamate aspartate transporter deficient mice. Inhibition of GluN2B and GluN2D activity is a potential therapeutic strategy for the treatment of several retinal diseases.
Dock3 interaction with a glutamate-receptor NR2D subunit protects neurons from excitotoxicity
Background N-methyl-D-aspartate receptors (NMDARs) are critical for neuronal development and synaptic plasticity. Dysregulation of NMDARs is implicated in neuropsychiatric disorders. Native NMDARs are heteromultimeric protein complexes consisting of NR1 and NR2 subunits. NR2 subunits (NR2A–D) are the major determinants of the functional properties of NMDARs. Most research has focused on NR2A- and/or NR2B-containing receptors. A recent study demonstrated that NR2C- and/or NR2D-containing NMDARs are the primary targets of memantine, a drug that is widely prescribed to treat Alzheimer’s disease. Our laboratory demonstrated that memantine prevents the loss of retinal ganglion cells (RGCs) in GLAST glutamate transporter knockout mice, a model of normal tension glaucoma (NTG), suggesting that NR2D-containing receptors may be involved in RGC loss in NTG. Results Here we demonstrate that NR2D deficiency attenuates RGC loss in GLAST-deficient mice. Furthermore, Dock3, a guanine nucleotide exchange factor, binds to the NR2D C-terminal domain and reduces the surface expression of NR2D, thereby protecting RGCs from excitotoxicity. Conclusions These results suggest that NR2D is involved in the degeneration of RGCs induced by excitotoxicity, and that the interaction between NR2D and Dock3 may have a neuroprotective effect. These findings raise the possibility that NR2D and Dock3 might be potential therapeutic targets for treating neurodegenerative diseases such as Alzheimer’s disease and NTG.
Decreased Expression of Glutamate Transporter GLAST in Bergmann Glia Is Associated with the Loss of Purkinje Neurons in the Spinocerebellar Ataxia Type 1
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease of the cerebellum caused by a polyglutamine-repeat expansion in the protein ATXN1. We have previously demonstrated that astrocytic activation occurs early in pathogenesis, correlates with disease progression, and can occur when mutant ATXN1 expression is limited to Purkinje neurons. We now show that expression of glutamate and aspartate transporter, GLAST, is decreased in cerebellar astrocytes in a mouse model of SCA1. This decrease occurs in non-cell autonomous manner late in disease and correlates well with the loss of Purkinje neurons. Astrogliosis or decreased neuronal activity does not correlate with diminished GLAST expression. In addition, Bergmann glia remain capable of transcriptional upregulation of GLAST in response to improvement in Purkinje neurons supporting the notion of active neuron-glia crosstalk in disease.
Delayed Anoxic Depolarizations in Hippocampal Neurons of Mice Lacking the Excitatory Amino Acid Carrier 1
Hypoxia leads to a rapid increase in vesicular release of glutamate. In addition, hypoxic glutamate release might be caused by reversed operation of neuronal glutamate transporters. An increase in extracellular glutamate concentration might be an important factor in generating anoxic depolarizations (AD) and subsequent neuronal damage. To study the AD and the vesicular release in hippocampal slices from CD1 wild-type mice and mice in which the neuronal glutamate transporter excitatory amino acid carrier 1 (EAAC1) had been knocked out, the authors performed recordings of field potentials and patch clamp recordings of CA1 pyramidal cells. Latency to anoxic depolarizations was enhanced in EAAC1−/− mice, whereas the hypoxia-induced increase in miniature excitatory postsynaptic current frequency occurred with similarly short latencies and to a similar extent in control and mutated animals. Additional block of glial glutamate uptake with TBOA (dl-threo-β-benzyloxyaspartate), a nontransportable and potent inhibitor, dramatically reduced the latency to onset of AD and abolished the difference between wild-type mice and EAAC1−/− mice. The authors conclude that the neuronal glutamate transporter greatly influences the latency to generation of AD. Because ADs are not prevented in EAAC1-deficient mice, vesicular release mechanisms also seem to be involved. They become prominent when glial glutamate transport is blocked.
Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport
The authors show long-term potentiation at the hippocampal CA3–CA1 synapse is modulated by EphA4 in the postsynaptic CA1 neuron and by ephrin-A3, an EphA4 ligand, in astrocytes, through their regulation of glial glutamate transporters. These results suggest EphA4/ephrin-A3 signaling as a mechanism for astrocytic regulation of synaptic plasticity. Astrocytes are critical participants in synapse development and function, but their role in synaptic plasticity is unclear. Eph receptors and their ephrin ligands have been suggested to regulate neuron-glia interactions, and EphA4-mediated ephrin reverse signaling is required for synaptic plasticity in the hippocampus. Here we show that long-term potentiation (LTP) at the CA3–CA1 synapse is modulated by EphA4 in the postsynaptic CA1 cell and by ephrin-A3, a ligand of EphA4 that is found in astrocytes. Lack of EphA4 increased the abundance of glial glutamate transporters, and ephrin-A3 modulated transporter currents in astrocytes. Pharmacological inhibition of glial glutamate transporters rescued the LTP defects in EphA4 ( Epha4 ) and ephrin-A3 ( Efna3 ) mutant mice. Transgenic overexpression of ephrin-A3 in astrocytes reduces glutamate transporter levels and produces focal dendritic swellings possibly caused by glutamate excitotoxicity. These results suggest that EphA4/ephrin-A3 signaling is a critical mechanism for astrocytes to regulate synaptic function and plasticity.
Pigment Epithelium‐Derived Factor Deficiency Impairs Hippocampal Glutamate Homeostasis and Cognitive Function by Downregulating Astrocytic GLT‐1
Maintenance of glutamate homeostasis is essential for synaptic plasticity and cognition. Disrupted glutamate‐glutamine cycling causes chronic excitotoxicity, a key driver of cognitive deficits in Alzheimer's disease (AD), though regulatory mechanisms remain unclear. Pigment epithelium‐derived factor (PEDF), a neuroprotective protein declining with age, is demonstrated here to play a novel role in synaptic glutamate clearance. Analysis of peripheral blood samples from 19 patients with AD and 75 non‐dementia control subjects revealed lower levels of PEDF in patients, and loss of PEDF correlates with cognitive decline. PEDF‐deficient mice exhibit defective learning and memory, and higher susceptibility to AD. Furthermore, PEDF deficiency impaired synaptic plasticity and dendritic spine morphology. Mechanistically, PEDF inhibits ubiquitin‐proteasome‐dependent degradation of astrocytic glutamate transporter‐1 (GLT‐1) and normally guarantees elimination of synaptic glutamate by modulating the protein kinase C signaling pathway. Strikingly, restoring PEDF rescued cognitive deficits in a mouse model of AD, and upregulation of GLT‐1 rescued cognitive impairment in PEDF‐deficient mice. Collectively, these findings reveal PEDF is a physiologic regulator of synaptic glutamate homeostasis. Targeting PEDF deficiency‐induced neural impairment may provide a novel avenue for the development of new therapeutic applications for neurodegenerative diseases associated with glutamate‐induced excitotoxicity. The chronic glutamate‐induced excitotoxicity hypothesis has profoundly informed the therapeutic strategies employed in Alzheimer’s disease (AD). This study shows pigment epithelium‐derived factor (PEDF) regulates astrocytic glutamate transporter‐1 (GLT‐1)‐mediated glutamate homeostasis and cognition. Reduced PEDF correlates with lower Mini‐Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores. PEDF preserves astrocytic glutamate uptake, offering mechanistic insights into AD progression.