Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,700 result(s) for "Fatty Acids, Nonesterified - blood"
Sort by:
Metabolic Effects of Late Dinner in Healthy Volunteers—A Randomized Crossover Clinical Trial
Abstract Context Consuming calories later in the day is associated with obesity and metabolic syndrome. We hypothesized that eating a late dinner alters substrate metabolism during sleep in a manner that promotes obesity. Objective The objective of this work is to examine the impact of late dinner on nocturnal metabolism in healthy volunteers. Design and Setting This is a randomized crossover trial of late dinner (LD, 22:00) vs routine dinner (RD, 18:00), with a fixed sleep period (23:00-07:00) in a laboratory setting. Participants Participants comprised 20 healthy volunteers (10 male, 10 female), age 26.0 ± 0.6 years, body mass index 23.2 ± 0.7 kg/m2, accustomed to a bedtime between 22:00 and 01:00. Interventions An isocaloric macronutrient diet was administered on both visits. Dinner (35% daily kcal, 50% carbohydrate, 35% fat) with an oral lipid tracer ([2H31] palmitate, 15 mg/kg) was given at 18:00 with RD and 22:00 with LD. Main Outcome Measures Measurements included nocturnal and next-morning hourly plasma glucose, insulin, triglycerides, free fatty acids (FFAs), cortisol, dietary fatty acid oxidation, and overnight polysomnography. Results LD caused a 4-hour shift in the postprandial period, overlapping with the sleep phase. Independent of this shift, the postprandial period following LD was characterized by higher glucose, a triglyceride peak delay, and lower FFA and dietary fatty acid oxidation. LD did not affect sleep architecture, but increased plasma cortisol. These metabolic changes were most pronounced in habitual earlier sleepers determined by actigraphy monitoring. Conclusion LD induces nocturnal glucose intolerance, and reduces fatty acid oxidation and mobilization, particularly in earlier sleepers. These effects might promote obesity if they recur chronically.
Steady-state bioavailability of prescription omega-3 on a low-fat diet is significantly improved with a free fatty acid formulation compared with an ethyl ester formulation: the ECLIPSE II study
The systemic bioavailability of free fatty acid (FFA) forms of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) compared with ethyl ester (EE) forms is dependent on the presence of intestinal lipases and is highest during consumption of high-fat meals. Given that patients with cardiovascular disease are advised to reduce dietary fat intake, potentially lowering the bioavailability and therapeutic benefit, the hypothesis that FFA forms provide for higher bioavailability compared with EE forms under low-fat diet conditions was tested where the pharmacokinetics of the FFA form (Epanova™) were compared with those of an ethyl ester form (Lovaza®) following repeat dosing. Fifty-two healthy male and female subjects were equally allocated to one of two open-label, parallel-group cohorts. Following a Therapeutic Lifestyle Changes diet for a minimum of 7 days, blood samples were drawn for endogenous values for EPA and DHA over a 24-hour period. Subjects were then administered 4 × 1 g capsules of either Epanova (OM3 FFA) or Lovaza (OM3 EE) once daily for 14 days, following which serial blood samples were drawn over a 24-hour period to characterize the bioavailability of EPA and DHA from the respective formulations. In addition, changes from baseline in lipid profile were explored. Systemic bioavailability, as measured by area under the curve from time zero to 24 hours (AUC(0-τ)) and the maximum measured plasma concentrations during the 0-24 hour dosing interval (C(max,ss)) of unadjusted total plasma EPA + DHA were approximately 3-fold and 3.9-fold higher, respectively, for Epanova relative to Lovaza. Following baseline adjustment, the magnitude of difference in bioavailability was approximately 5.8-fold and 6.5-fold higher in AUC(0-τ) and C(max,ss), respectively, for Epanova relative to Lovaza. Serum triglycerides were reduced by a significantly greater extent (P = 0.013) for Epanova relative to Lovaza (21% versus 8%). The bioavailability of the FFA forms of EPA and DHA in Epanova are significantly greater than the bioavailability from the EE forms present in Lovaza under low-fat dietary conditions normally recommended for patients with cardiovascular disease. This increased bioavailability may lead to improved triglyceride-lowering in patients with hypertriglyceridemia.
Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss
BackgroundLifestyle interventions focusing on weight loss remain the cornerstone of non-alcoholic fatty liver disease (NAFLD) management. Despite this, the weight losses achieved in research trials are not easily replicated in the clinic and there is an urgent need for therapies independent of weight loss. Aerobic exercise is not well sustained and the effectiveness of the better tolerated resistance exercise upon liver lipid and mediators of liver lipid has not been assessed.MethodsSedentary adults with clinically defined NAFLD were assigned to 8 weeks of resistance exercise (n=11) or continued normal treatment (n=8).Results8 weeks of resistance exercise elicited a 13% relative reduction in liver lipid (14.0±9.1 vs 12.2±9.0; p<0.05). Lipid oxidation (submaximal RQ ∆ −0.020±0.010 vs −0.004±0.003; p<0.05), glucose control (−12% vs +12% change AUC; p<0.01) and homeostasis model assessment insulin resistance (5.9±5.9 to 4.6±4.6 vs 4.7±2.1 to 5.1±2.5; p<0.05) were all improved. Resistance exercise had no effect on body weight, visceral adipose tissue volume, or whole body fat mass (p>0.05).ConclusionThis is the first study to demonstrate that resistance exercise specifically improves NAFLD independent of any change in body weight. These data demonstrate that resistance exercise may provide benefit for the management for non-alcoholic fatty liver, and the long-term impact of this now requires evaluation.
Fatty acid profile of plasma NEFA does not reflect adipose tissue fatty acid profile
Adipose tissue (AT) fatty acid (FA) composition partly reflects habitual dietary intake. Circulating NEFA are mobilised from AT and might act as a minimally invasive surrogate marker of AT FA profile. Agreement between twenty-eight FA in AT and plasma NEFA was assessed using concordance coefficients in 204 male and female participants in a 12-month intervention using supplements to increase the intake of EPA and DHA. Concordance coefficients generally showed very poor agreement between AT FA and plasma NEFA at baseline SFA: 0·07; MUFA: 0·03; n-6 PUFA: 0·28; n-3 PUFA: 0·01). Participants were randomly divided into training (70 %) and validation (30 %) data sets, and models to predict AT and dietary FA were fitted using data from the training set, and their predictive ability was assessed using data from the validation set. AT n-6 PUFA and SFA were predicted from plasma NEFA with moderate accuracy (mean absolute percentage error n-6 PUFA: 11 % and SFA: 8 %), but predicted values were unable to distinguish between low, medium and high FA values, with only 25 % of n-6 PUFA and 33 % of SFA predicted values correctly assigned to the appropriate tertile group. Despite an association between AT and plasma NEFA EPA (P=0·001) and DHA (P=0·01) at baseline, there was no association after the intervention. To conclude, plasma NEFA are not a suitable surrogate for AT FA.
Obstructive Sleep Apnea Dynamically Increases Nocturnal Plasma Free Fatty Acids, Glucose, and Cortisol During Sleep
ContextObstructive sleep apnea (OSA) is associated with diabetes and cardiovascular disease. This association may be related to metabolic changes that transpire during sleep in OSA.ObjectiveTo examine the impact of OSA, elicited by cessation of continuous positive airway pressure (CPAP), on frequently sampled nocturnal metabolic markers including plasma free fatty acids (FFAs), glucose, insulin, triglycerides (TGs), cortisol, and lactate, as well as glucose production, oral glucose tolerance, blood pressure (BP), endothelial function, cholesterol, and high-sensitivity C-reactive protein (hsCRP).Design and SettingRandomized crossover trial of CPAP vs CPAP withdrawal.PatientsThirty-one patients with moderate to severe OSA acclimated to CPAP.InterventionPatients underwent attended polysomnography while sleeping with therapeutic CPAP, or after CPAP withdrawal, in random order. Venous blood was sampled at ∼20-minute intervals on both nights. In 11 patients, we assessed glucose kinetics with an infusion of 6,6-[2H2]glucose.ResultsCPAP withdrawal caused recurrence of OSA associated with hypoxemia, sleep disruption, and heart rate (HR) elevation. CPAP withdrawal dynamically increased nocturnal FFA (P = 0.007), glucose (P = 0.028), and cortisol (P = 0.037), in proportion to respiratory event frequency, HR elevation, or sleep fragmentation. Diabetes predisposed to glucose elevation. CPAP withdrawal also increased systolic BP (P = 0.017) and augmentation index (P = 0.008), but did not affect insulin, TGs, glucose production, oral glucose tolerance, cholesterol, or hsCRP.ConclusionOSA recurrence during CPAP withdrawal increases FFA and glucose during sleep, associated with sympathetic and adrenocortical activation. Recurring exposure to these metabolic changes may foster diabetes and cardiovascular disease.We studied the overnight metabolic profile of patients during sleep, in the presence or absence of sleep apnea. Sleep apnea caused dynamic elevations of plasma FFA and glucose.
Effects of a Brown Beans Evening Meal on Metabolic Risk Markers and Appetite Regulating Hormones at a Subsequent Standardized Breakfast: A Randomized Cross-Over Study
Dietary prevention strategies are increasingly recognized as essential to combat the current epidemic of obesity and related metabolic disorders. The purpose of the present study was to evaluate the potential prebiotic effects of indigestible carbohydrates in Swedish brown beans (Phaseolus vulgaris var. nanus) in relation to cardiometabolic risk markers and appetite regulating hormones. Brown beans, or white wheat bread (WWB, reference product) were provided as evening meals to 16 healthy young adults in a randomised crossover design. Glucose, insulin, appetite regulatory hormones, GLP-1, GLP-2, appetite sensations, and markers of inflammation were measured at a following standardised breakfast, that is at 11 to 14 h post the evening meals. Additionally, colonic fermentation activity was estimated from measurement of plasma short chain fatty acids (SCFA, including also branched chain fatty acids) and breath hydrogen (H2) excretion. An evening meal of brown beans, in comparison with WWB, lowered blood glucose (-15%, p<0.01)- and insulin (-16%, p<0.05) responses, increased satiety hormones (PYY 51%, p<0.001), suppressed hunger hormones (ghrelin -14%, p<0.05), and hunger sensations (-15%, p = 0.05), increased GLP-2 concentrations (8.4%, p<0.05) and suppressed inflammatory markers (IL-6 -35%, and IL-18 -8.3%, p<0.05) at a subsequent standardised breakfast. Breath H2 (141%, p<0.01), propionate (16%, p<0.05), and isobutyrate (18%, P<0.001) were significantly increased after brown beans compared to after WWB, indicating a higher colonic fermentative activity after brown beans. An evening meal with brown beans beneficially affected important measures of cardiometabolic risk and appetite regulatory hormones, within a time frame of 11-14 h, in comparison to a WWB evening meal. Concentrations of plasma SCFA and H2 were increased, indicating involvement of colonic fermentation. Indigestible colonic substrates from brown beans may provide a preventive tool in relation to obesity and the metabolic syndrome. ClinicalTrials.gov NCT01706042.
Moderate Amounts of Fructose Consumption Impair Insulin Sensitivity in Healthy Young Men: A randomized controlled trial
Adverse effects of hypercaloric, high-fructose diets on insulin sensitivity and lipids in human subjects have been shown repeatedly. The implications of fructose in amounts close to usual daily consumption, however, have not been well studied. This study assessed the effect of moderate amounts of fructose and sucrose compared with glucose on glucose and lipid metabolism. Nine healthy, normal-weight male volunteers (aged 21-25 years) were studied in this double-blind, randomized, cross-over trial. All subjects consumed four different sweetened beverages (600 mL/day) for 3 weeks each: medium fructose (MF) at 40 g/day, and high fructose (HF), high glucose (HG), and high sucrose (HS) each at 80 g/day. Euglycemic-hyperinsulinemic clamps with [6,6]-(2)H(2) glucose labeling were used to measure endogenous glucose production. Lipid profile, glucose, and insulin were measured in fasting samples. Hepatic suppression of glucose production during the clamp was significantly lower after HF (59.4 ± 11.0%) than HG (70.3 ± 10.5%, P < 0.05), whereas fasting glucose, insulin, and C-peptide did not differ between the interventions. Compared with HG, LDL cholesterol and total cholesterol were significantly higher after MF, HF, and HS, and free fatty acids were significantly increased after MF, but not after the two other interventions (P < 0.05). Subjects' energy intake during the interventions did not differ significantly from baseline intake. This study clearly shows that moderate amounts of fructose and sucrose significantly alter hepatic insulin sensitivity and lipid metabolism compared with similar amounts of glucose.
Are there interindividual differences in the reactive hypoglycaemia response to breakfast? A replicate crossover trial
Background Following consumption of a meal, circulating glucose concentrations can rise and then fall briefly below the basal/fasting concentrations. This phenomenon is known as reactive hypoglycaemia but to date no researcher has explored potential inter-individual differences in response to meal consumption. Objective We conducted a secondary analysis of existing data to examine inter-individual variability of reactive hypoglycaemia in response to breakfast consumption. Methods Using a replicate crossover design, 12 healthy, physically active men (age: 18–30 y, body mass index: 22.1 to 28.0 kg⋅m − 2 ) completed two identical control (continued overnight fasting) and two breakfast (444 kcal; 60% carbohydrate, 17% protein, 23% fat) conditions in randomised sequences. Blood glucose and lactate concentrations, serum insulin and non-esterified fatty acid concentrations, whole-body energy expenditure, carbohydrate and fat oxidation rates, and appetite ratings were determined before and 2 h after the interventions. Inter-individual differences were explored using Pearson’s product-moment correlations between the first and second replicates of the fasting-adjusted breakfast response. Within-participant covariate-adjusted linear mixed models and a random-effects meta-analytical approach were used to quantify participant-by-condition interactions. Results Breakfast consumption lowered 2-h blood glucose by 0.44 mmol/L (95%CI: 0.76 to 0.12 mmol/L) and serum NEFA concentrations, whilst increasing blood lactate and serum insulin concentrations (all p  < 0.01). Large, positive correlations were observed between the first and second replicates of the fasting-adjusted insulin, lactate, hunger, and satisfaction responses to breakfast consumption (all r  > 0.5, 90%CI ranged from 0.03 to 0.91). The participant-by-condition interaction response variability (SD) for serum insulin concentration was 11 pmol/L (95%CI: 5 to 16 pmol/L), which was consistent with the τ-statistic from the random-effects meta-analysis (11.7 pmol/L, 95%CI 7.0 to 22.2 pmol/L) whereas effects were unclear for other outcome variables (e.g., τ-statistic value for glucose: 0 mmol/L, 95%CI 0.0 to 0.5 mmol/L). Conclusions Despite observing reactive hypoglycaemia at the group level, we were unable to detect any meaningful inter-individual variability of the reactive hypoglycaemia response to breakfast. There was, however, evidence that 2-h insulin responses to breakfast display meaningful inter-individual variability, which may be explained by relative carbohydrate dose ingested and variation in insulin sensitivity of participants.
A single bout of resistance exercise improves postprandial lipid metabolism in overweight/obese men with prediabetes
Aims/hypothesisPrediabetes is associated with postprandial hypertriacylglycerolaemia. Resistance exercise acutely lowers postprandial plasma triacylglycerol (TG); however, the changes in lipid metabolism that mediate this reduction are poorly understood. The aim of this study was to identify the constitutive metabolic mechanisms underlying the changes in postprandial lipid metabolism after resistance exercise in obese men with prediabetes.MethodsWe evaluated the effect of a single bout of whole-body resistance exercise (seven exercises, three sets, 10–12 repetitions at 80% of one-repetition maximum) on postprandial lipid metabolism in ten middle-aged (50 ± 9 years), overweight/obese (BMI: 33 ± 3 kg/m2), sedentary men with prediabetes (HbA1c >38 but <48 mmol/mol [>5.7% but <6.5%]), or fasting plasma glucose >5.6 mmol/l but <7.0 mmol/l or 2 h OGTT glucose >7.8 mmol/l but <11.1 mmol/l). We used a randomised, crossover design with a triple-tracer mixed meal test (ingested [(13C4)3]tripalmitin, i.v. [U-13C16]palmitate and [2H5]glycerol) to evaluate chylomicron-TG and total triacylglycerol-rich lipoprotein (TRL)-TG kinetics. We used adipose tissue and skeletal muscle biopsies to evaluate the expression of genes regulating lipolysis and lipid oxidation, skeletal muscle respirometry to evaluate oxidative capacity, and indirect calorimetry to assess whole-body lipid oxidation.ResultsThe single bout of resistance exercise reduced the lipaemic response to a mixed meal in obese men with prediabetes without changing chylomicron-TG or TRL-TG fractional clearance rates. However, resistance exercise reduced endogenous and meal-derived fatty acid incorporation into chylomicron-TG and TRL-TG. Resistance exercise also increased whole-body lipid oxidation, skeletal muscle mitochondrial respiration, oxidative gene expression in skeletal muscle, and the expression of key lipolysis genes in adipose tissue.Conclusions/interpretationA single bout of resistance exercise improves postprandial lipid metabolism in obese men with prediabetes, which may mitigate the risk for cardiovascular disease and type 2 diabetes.
Postprandial incorporation of EPA and DHA from transgenic Camelina sativa oil into blood lipids is equivalent to that from fish oil in healthy humans
EPA and DHA are important components of cell membranes. Since humans have limited ability for EPA and DHA synthesis, these must be obtained from the diet, primarily from oily fish. Dietary EPA and DHA intakes are constrained by the size of fish stocks and by food choice. Seed oil from transgenic plants that synthesise EPA and DHA represents a potential alternative source of these fatty acids, but this has not been tested in humans. We hypothesised that incorporation of EPA and DHA into blood lipids from transgenic Camelina sativa seed oil (CSO) is equivalent to that from fish oil. Healthy men and women (18–30 years or 50–65 years) consumed 450 mg EPA + DHA from either CSO or commercial blended fish oil (BFO) in test meals in a double-blind, postprandial cross-over trial. There were no significant differences between test oils or sexes in EPA and DHA incorporation into plasma TAG, phosphatidylcholine or NEFA over 8 h. There were no significant differences between test oils, age groups or sexes in postprandial VLDL, LDL or HDL sizes or concentrations. There were no significant differences between test oils in postprandial plasma TNFα, IL 6 or 10, or soluble intercellular cell adhesion molecule-1 concentrations in younger participants. These findings show that incorporation into blood lipids of EPA and DHA consumed as CSO was equivalent to BFO and that such transgenic plant oils are a suitable dietary source of EPA and DHA in humans.