Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2,440 result(s) for "Fetal Diseases - pathology"
Sort by:
Zika Virus Associated with Microcephaly
Zika virus is an emerging infectious disease that is spreading rapidly through the Americas. A major concern is the association with birth defects, especially microcephaly. This report shows evidence of Zika virus in the fetal brain. ZIKV, an emerging mosquito-borne flavivirus, was initially isolated from a rhesus monkey in the Zika forest in Uganda in 1947. 1 It is transmitted by various species of aedes mosquitoes. After the first human ZIKV infection, sporadic cases were reported in Southeast Asia and sub-Saharan Africa. 2 ZIKV was responsible for the outbreak in Yap Island of Micronesia in 2007 and for major epidemics in French Polynesia, New Caledonia, the Cook Islands, and Easter Island in 2013 and 2014. 3 , 4 In 2015, there was a dramatic increase in reports of ZIKV infection in the Americas. Brazil is the most affected country, with . . .
Fetal Vascular Malperfusion
- Fetal vascular malperfusion, also known as fetal thrombotic vasculopathy, remains an underrecognized pathologic finding and should be noted during placental evaluation. - To review histologic findings, gain familiarity with the updated terminology, and to recognize important clinical associations with this entity. - University of Michigan cases, PubMed search, multiple review articles including recent placental workshop group consensus statement, and selected book chapters. - Multiple histologic patterns of fetal vascular malperfusion have been described including thrombosis, avascular villi, villous stromal-vascular karyorrhexis, intramural fibrin thrombi, and stem villous vascular obliteration. Various underlying etiologies can be involved in fetal vascular malperfusion. Cord lesions including abnormal insertion, length, and coiling are important causes. Maternal vascular malperfusion such as preeclampsia, hypercoagulable states, lupus anticoagulant, and sometimes diabetes have been associated with this condition. Fetal cardiac dysfunction/malformations and severe fetal inflammatory response in the setting of ascending intrauterine infection have also been attributed to this important finding. Fetal vascular malperfusion has been implicated in several significant and sometimes devastating clinical associations; these include intrauterine growth restriction, poor perinatal outcome, fetal demise, and neurodevelopmental sequelae. A diagnostic challenge may be encountered in cases with prior intrauterine fetal death, since degenerative changes post demise result in a similar histomorphologic picture. The diffuse versus the focal nature of the lesions may help in the distinction.
Neuroplacentology in congenital heart disease: placental connections to neurodevelopmental outcomes
Children with congenital heart disease (CHD) are living longer due to effective medical and surgical management. However, the majority have neurodevelopmental delays or disorders. The role of the placenta in fetal brain development is unclear and is the focus of an emerging field known as neuroplacentology. In this review, we summarize neurodevelopmental outcomes in CHD and their brain imaging correlates both in utero and postnatally. We review differences in the structure and function of the placenta in pregnancies complicated by fetal CHD and introduce the concept of a placental inefficiency phenotype that occurs in severe forms of fetal CHD, characterized by a myriad of pathologies. We propose that in CHD placental dysfunction contributes to decreased fetal cerebral oxygen delivery resulting in poor brain growth, brain abnormalities, and impaired neurodevelopment. We conclude the review with key areas for future research in neuroplacentology in the fetal CHD population, including (1) differences in structure and function of the CHD placenta, (2) modifiable and nonmodifiable factors that impact the hemodynamic balance between placental and cerebral circulations, (3) interventions to improve placental function and protect brain development in utero, and (4) the role of genetic and epigenetic influences on the placenta–heart–brain connection.ImpactNeuroplacentology seeks to understand placental connections to fetal brain development.In fetuses with CHD, brain growth abnormalities begin in utero.Placental microstructure as well as perfusion and function are abnormal in fetal CHD.
Intraamniotic Zika virus inoculation of pregnant rhesus macaques produces fetal neurologic disease
Zika virus (ZIKV) infection of pregnant women can cause fetal microcephaly and other neurologic defects. We describe the development of a non-human primate model to better understand fetal pathogenesis. To reliably induce fetal infection at defined times, four pregnant rhesus macaques are inoculated intravenously and intraamniotically with ZIKV at gestational day (GD) 41, 50, 64, or 90, corresponding to first and second trimester of gestation. The GD41-inoculated animal, experiencing fetal death 7 days later, has high virus levels in fetal and placental tissues, implicating ZIKV as cause of death. The other three fetuses are carried to near term and euthanized; while none display gross microcephaly, all show ZIKV RNA in many tissues, especially in the brain, which exhibits calcifications and reduced neural precursor cells. Given that this model consistently recapitulates neurologic defects of human congenital Zika syndrome, it is highly relevant to unravel determinants of fetal neuropathogenesis and to explore interventions. Zika virus infection of pregnant women can cause congenital brain defects. Here, Coffey et al. establish a pregnant rhesus macaque model, using intravenous and intraamniotic route of infection, that reliably reproduces fetal neurologic defects of congenital Zika syndrome in humans.
Zika Virus Infection in Pregnancy, Microcephaly, and Maternal and Fetal Health: What We Think, What We Know, and What We Think We Know
Context.—The global epidemic of Zika virus (ZIKV) infection has emerged as an important public health problem affecting pregnant women and their infants. Objectives.—To review the causal association between ZIKV infection during pregnancy and intrauterine fetal infection, microcephaly, brain damage, congenital malformation syndrome, and experimental laboratory models of fetal infection. Many questions remain regarding the risk factors, pathophysiology, epidemiology, and timing of maternal-fetal transmission and disease. These include mechanisms of fetal brain damage and microcephaly; the role of covariables, such as viral burden, duration of viremia, and host genetics, on vertical transmission; and the clinical and pathologic spectrum of congenital Zika syndrome. Additional questions include defining the potential long-term physical and neurobehavioral outcomes for infected infants, whether maternal or fetal host genetics influence the clinical outcome, and whether ZIKV infection can cause maternal morbidity. Finally, are experimental laboratory and animal models of ZIKV infection helpful in addressing maternal-fetal viral transmission and the development of congenital microcephaly? This communication provides current information and attempts to address some of these important questions. Data Sources.—Comprehensive review of published scientific literature. Conclusions.—Recent advances in epidemiology, clinical medicine, pathology, and experimental studies have provided a great amount of new information regarding vertical ZIKV transmission and the mechanisms of congenital microcephaly, brain damage, and congenital Zika syndrome in a relatively short time. However, much work still needs to be performed to more completely understand the maternal and fetal aspects of this new and emerging viral disease.
The genomic and clinical landscape of fetal akinesia
Fetal akinesia has multiple clinical subtypes with over 160 gene associations, but the genetic etiology is not yet completely understood. In this study, 51 patients from 47 unrelated families were analyzed using next-generation sequencing (NGS) techniques aiming to decipher the genomic landscape of fetal akinesia (FA). We have identified likely pathogenic gene variants in 37 cases and report 41 novel variants. Additionally, we report putative pathogenic variants in eight cases including nine novel variants. Our work identified 14 novel disease–gene associations for fetal akinesia: ADSSL1, ASAH1, ASPM, ATP2B3,EARS2, FBLN1, PRG4, PRICKLE1, ROR2, SETBP1, SCN5A, SCN8A, and ZEB2. Furthermore, a sibling pair harbored a homozygous copy-number variant inTNNT1, an ultrarare congenital myopathy gene that has been linked to arthrogryposis via Gene Ontology analysis. Our analysis indicates that genetic defects leading to primary skeletal muscle diseases might have been underdiagnosed, especially pathogenic variants in RYR1. We discuss three novel putative fetal akinesia genes: GCN1,IQSEC3 and RYR3. Of those, IQSEC3, andRYR3 had been proposed as neuromuscular disease–associated genes recently, and our findings endorse them as FA candidate genes. By combining NGS with deep clinical phenotyping, we achieved a 73% success rate of solved cases.
Prenatal Findings in Congenital Leukemia: A Case Report
We here describe a case of congenital leukemia that ended in intrauterine fetal demise at 30 weeks of gestation. Acute enlargement of the fetal trunk, elevated pulsatility index of the umbilical artery with concomitant decline of pulsatility index of the middle cerebral artery, pleural effusion, and polyhydramnios preceded the fetal death. Diagnosis of congenital myeloid leukemia was suggested by microscopic examination of the placental tissue, revealing immature myeloid precursors filling the lumina of fetal vessels in the umbilical cord and chorionic villi. Extensive vascular involvement of the placenta by leukemic cells was considered to be a primary cause of the fetal death.
Brain Barrier Properties and Cerebral Blood Flow in Neonatal Mice Exposed to Cerebral Hypoxia-Ischemia
Insults to the developing brain often result in irreparable damage resulting in long-term deficits in motor and cognitive functions. The only treatment today for hypoxic-ischemic encephalopathy (HIE) in newborns is hypothermia, which has limited clinical benefit. We have studied changes to the blood–brain barriers (BBB) as well as regional cerebral blood flow (rCBF) in a neonatal model of HIE to further understand the underlying pathologic mechanisms. Nine-day old mice pups, brain roughly equivalent to the near-term human fetus, were subjected to hypoxia-ischemia. Hypoxia-ischemia increased BBB permeability to small and large molecules within hours after the insult, which normalized in the following days. The opening of the BBB was associated with changes to BBB protein expression whereas gene transcript levels were increased showing direct molecular damage to the BBB but also suggesting compensatory mechanisms. Brain pathology was closely related to reductions in rCBF during the hypoxia as well as the areas with compromised BBB showing that these are intimately linked. The transient opening of the BBB after the insult is likely to contribute to the pathology but at the same time provides an opportunity for therapeutics to better reach the infarcted areas in the brain.
Placental malperfusion in response to intrauterine inflammation and its connection to fetal sequelae
Exposure to intrauterine inflammation (IUI) is associated with short- and long-term adverse perinatal outcomes. However, little data exist on utilizing placenta to prognosticate fetal injury in this scenario. Our study aimed to utilize imaging modalities to evaluate mechanisms contributing to placental injury following IUI exposure and correlated it to concomitant fetal brain injury. CD1 pregnant dams underwent laparotomies and received intrauterine injections of either lipopolysaccharide (LPS; a model of IUI) or phosphate-buffered saline (PBS). In utero ultrasound Doppler velocimetry of uterine and umbilical arteries and magnetic resonance imaging (MRI) of placental volumes with confirmatory immunohistochemical (vimentin) and histochemistry (fibrin) analyses were performed. ELISA for thrombosis markers, fibrinogen and fibrin was performed to analyze thrombi in placenta. Fetal brain immunohistochemistry was performed to detect microglial activation (ionized calcium-binding adaptor molecule 1, Iba1). On ultrasound, LPS group demonstrated elevated resistance indices, pulsatility indices and a greater occurrence of absent end-diastolic flow in the umbilical and uterine arteries. In the fetus, there was an increased cardiac Tei indices in the LPS group. MRI revealed decreased volume of placenta in the LPS group associated with placental thinning and placental endothelial damage on immunohistochemistry. Decreased fibrinogen content and more thrombi staining in placenta exposed to maternal LPS indicated the hypercoagulability. Furthermore, the expression of Iba1was significantly associated with placental thickness (r = -0.7890, Pearson correlation coefficient). Our data indicate that IUI can trigger events leading to maternal placental malperfusion and fetal vessel resistance, as well as predispose the developing fetus to cardiac dysfunction and brain damage. Furthermore, our data suggest that prenatal ultrasound can be a real-time clinical tool for assessing fetal risk for adverse neurologic outcomes following the potential IUI exposure.
Pathogenesis of cerebral white matter injury of prematurity
Cerebral white matter injury, characterised by loss of premyelinating oligodendrocytes (pre-OLs), is the most common form of injury to the preterm brain and is associated with a high risk of neurodevelopmental impairment. The unique cerebrovascular anatomy and physiology of the premature baby underlies the exquisite sensitivity of white matter to the abnormal milieu of preterm extrauterine life, in particular ischaemia and inflammation. These two upstream mechanisms can coexist and amplify their effects, leading to activation of two principal downstream mechanisms: excitotoxicity and free radical attack. Upstream mechanisms trigger generation of reactive oxygen and nitrogen species. The pre-OL is intrinsically vulnerable to free radical attack due to immaturity of antioxidant enzyme systems and iron accumulation. Ischaemia and inflammation trigger glutamate receptor-mediated injury leading to maturation-dependent cell death and loss of cellular processes. This review looks at recent evidence for pathogenetic mechanisms in white matter injury with emphasis on targets for prevention and treatment of injury.