Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
206
result(s) for
"Flavanones - therapeutic use"
Sort by:
Naringin attenuates Actinobacillus pleuropneumoniae-induced acute lung injury via MAPK/NF-κB and Keap1/Nrf2/HO-1 pathway
by
Zhao, Guan-Yu
,
Xin, Rui-Hua
,
Li, Zhao-Rong
in
Actinobacillus Infections
,
Actinobacillus Infections - drug therapy
,
Actinobacillus Infections - veterinary
2024
Actinobacillus pleuropneumoniae (APP)
causes porcine pleuropneumonia (PCP), which is clinically characterized by acute hemorrhagic, necrotizing pneumonia, and chronic fibrinous pneumonia. Although many measures have been taken to prevent the disease, prevention and control of the disease are becoming increasingly difficult due to the abundance of APP sera, weak vaccine cross-protection, and increasing antibiotic resistance in APP. Therefore, there is an urgent need to develop novel drugs against APP infection to prevent the spread of APP. Naringin (NAR) has been reported to have an excellent therapeutic effect on pulmonary diseases, but its therapeutic effect on lung injury caused by APP is not apparent. Our research has shown that NAR was able to alleviate APP-induced weight loss and quantity of food taken and reduce the number of WBCs and NEs in peripheral blood in mice; pathological tissue sections showed that NAR was able to prevent and control APP-induced pathological lung injury effectively; based on the establishment of an in vivo/in vitro model of APP inflammation, it was found that NAR was able to play an anti-inflammatory role through inhibiting the MAPK/NF-κB signaling pathway and exerting anti-inflammatory effects; additionally, NAR activating the Nrf2 signalling pathway, increasing the secretion of antioxidant enzymes Nqo1, CAT, and SOD1, inhibiting the secretion of oxidative damage factors NOS2 and COX2, and enhancing the antioxidant stress ability, thus playing an antioxidant role. In summary, NAR can relieve severe lung injury caused by APP by reducing excessive inflammatory response and improving antioxidant capacity.
Journal Article
Flavonoid intake and risk of CVD: a systematic review and meta-analysis of prospective cohort studies
by
Wang, Xia
,
Liu, Jun
,
Zhao, Gang
in
anthocyanidins
,
Anthocyanins - pharmacology
,
Anthocyanins - therapeutic use
2014
Observational studies have suggested that the intake of flavonoids is associated with a decreased risk of CVD. However, the results of these studies remain controversial. The aim of the present study was to evaluate the association between dietary flavonoid intake and CVD risk by conducting a systematic review of prospective cohort studies. Electronic reference databases were searched to identify studies that met the pre-stated inclusion criteria. The studies were assessed for eligibility and data were extracted by two authors independently. For each study, relative risks (RR) and 95 % CI were extracted and pooled using either a fixed-effects or a random-effects model. Generalised least-squares trend estimation analysis was used to evaluate dose–response relationships. The inclusion criteria were met by fourteen prospective cohort studies. The intakes of anthocyanidins (RR 0·89, 95 % CI 0·83, 0·96), proanthocyanidins (RR 0·90, 95 % CI 0·82, 0·98), flavones (RR 0·88, 95 % CI 0·82, 0·96), flavanones (RR 0·88, 95 % CI 0·82, 0·96) and flavan-3-ols (RR 0·87, 95 % CI 0·80, 0·95) were inversely associated with the risk of CVD when comparing the highest and lowest categories of intake. A similar association was observed for flavonol intake and CVD risk. Sensitivity and subgroup analyses further supported this association. The summary RR for CVD for every 10 mg/d increment in flavonol intake was 0·95 (95 % CI 0·91, 0·99). The present systematic review suggests that the dietary intakes of six classes of flavonoids, namely flavonols, anthocyanidins, proanthocyanidins, flavones, flavanones and flavan-3-ols, significantly decrease the risk of CVD.
Journal Article
The Natural Flavonoid Pinocembrin: Molecular Targets and Potential Therapeutic Applications
2016
Pinocembrin is a natural flavonoid compound extracted from honey, propolis, ginger roots, wild marjoram, and other plants. In preclinical studies, it has shown anti-inflammatory and neuroprotective effects as well as the ability to reduce reactive oxygen species, protect the blood-brain barrier, modulate mitochondrial function, and regulate apoptosis. Considering these pharmaceutical characteristics, pinocembrin has potential as a drug to treat ischemic stroke and other clinical conditions. In this review, we summarize its pharmacologic characteristics and discuss its mechanisms of action and potential therapeutic applications.
Journal Article
The Fascinating Effects of Baicalein on Cancer: A Review
by
Dong, Yonghui
,
Chen, Anmin
,
Gao, Yutong
in
Antineoplastic Agents - pharmacology
,
Antineoplastic Agents - therapeutic use
,
Apoptosis - drug effects
2016
Cancer is one of the leading causes of death worldwide and a major global health problem. In recent decades, the rates of both mortality and morbidity of cancer have rapidly increased for a variety of reasons. Despite treatment options, there are serious side effects associated with chemotherapy drugs and multiple forms of drug resistance that significantly reduce their effects. There is an accumulating amount of evidence on the pharmacological activities of baicalein (e.g., anti-inflammatory, antioxidant, antiviral, and antitumor effects). Furthermore, there has been great progress in elucidating the target mechanisms and signaling pathways of baicalein’s anti-cancer potential. The anti-tumor functions of baicalein are mainly due to its capacities to inhibit complexes of cyclins to regulate the cell cycle, to scavenge oxidative radicals, to attenuate mitogen activated protein kinase (MAPK), protein kinase B (Akt) or mammalian target of rapamycin (mTOR) activities, to induce apoptosis by activating caspase-9/-3 and to inhibit tumorinvasion and metastasis by reducing the expression of matrix metalloproteinase-2/-9 (MMP-2/-9). In this review, we focused on the relevant biological mechanisms of baicalein involved in inhibiting various cancers, such as bladder cancer, breast cancer, and ovarian cancer. Moreover, we also summarized the specific mechanisms by which baicalein inhibited the growth of various tumors in vivo. Taken together, baicalein may be developed as a potential, novel anticancer drug to treat tumors.
Journal Article
Propolis, Bee Honey, and Their Components Protect against Coronavirus Disease 2019 (COVID-19): A Review of In Silico, In Vitro, and Clinical Studies
2021
Despite the virulence and high fatality of coronavirus disease 2019 (COVID-19), no specific antiviral treatment exists until the current moment. Natural agents with immune-promoting potentials such as bee products are being explored as possible treatments. Bee honey and propolis are rich in bioactive compounds that express strong antimicrobial, bactericidal, antiviral, anti-inflammatory, immunomodulatory, and antioxidant activities. This review examined the literature for the anti-COVID-19 effects of bee honey and propolis, with the aim of optimizing the use of these handy products as prophylactic or adjuvant treatments for people infected with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Molecular simulations show that flavonoids in propolis and honey (e.g., rutin, naringin, caffeic acid phenyl ester, luteolin, and artepillin C) may inhibit viral spike fusion in host cells, viral-host interactions that trigger the cytokine storm, and viral replication. Similar to the potent antiviral drug remdesivir, rutin, propolis ethanolic extract, and propolis liposomes inhibited non-structural proteins of SARS-CoV-2 in vitro, and these compounds along with naringin inhibited SARS-CoV-2 infection in Vero E6 cells. Propolis extracts delivered by nanocarriers exhibit better antiviral effects against SARS-CoV-2 than ethanolic extracts. In line, hospitalized COVID-19 patients receiving green Brazilian propolis or a combination of honey and Nigella sativa exhibited earlier viral clearance, symptom recovery, discharge from the hospital as well as less mortality than counterparts receiving standard care alone. Thus, the use of bee products as an adjuvant treatment for COVID-19 may produce beneficial effects. Implications for treatment outcomes and issues to be considered in future studies are discussed.
Journal Article
Wogonin protects against cisplatin-induced acute kidney injury by targeting RIPK1-mediated necroptosis
2018
Acute kidney injury (AKI), characterized by aggressive inflammatory responses and destruction of renal resident cells, can cause abrupt kidney dysfunction. To date, effective therapy for AKI is lacking. In this study, we evaluated the renoprotective effect of wogonin, an herbal active compound, using a cisplatin-induced AKI mouse model. In vivo results show that wogonin substantially suppressed the increased levels of serum creatinine and blood urea nitrogen (BUN) almost to the normal level. Wogonin also attenuated tubular damage, shown by PAS staining, electron microscopy and molecular analysis of KIM-1. In addition, wogonin suppressed kidney inflammation as indicated by a >60% decrease in macrophage infiltration, a >50% reduction in inflammatory cytokine production and inhibited NF-κB activation in the injured kidney. Mechanistically, molecular docking results show that wogonin effectively inhibited RIPK1 by occupying the ATP-binding pocket of the enzyme, which is a key regulator of necroptosis. Moreover, inhibition of RIPK1, or RIPK3, reversed the protective effects of wogonin in cisplatin-treated HK2 cells, indicating wogonin works in a RIPK1/RIPK3-dependent manner. Surprisingly, wogonin enhanced the anti-proliferative effect of cisplatin on human hepatoma HepG2 cells. Thus, our findings suggest wogonin may be a renoprotective adjuvant for cisplatin-based anticancer therapy.
Journal Article
Moroccan natural products for multitarget-based treatment of Alzheimer’s disease: A computational study
by
Khedraoui, Meriem
,
Raouf, Yasir S.
,
Guerguer, Fatima Zahra
in
Acetylcholinesterase
,
Acetylcholinesterase - chemistry
,
Acetylcholinesterase - metabolism
2025
Alzheimer’s disease is a neurodegenerative disorder that impairs neurocognitive functions. Acetylcholinesterase, Butyrylcholinesterase, Monoamine Oxidase B, Beta-Secretase, and Glycogen Synthase Kinase Beta play central roles in its pathogenesis. Current medications primarily inhibit AChE but fail to halt or reverse disease progression due to the multifactorial nature of Alzheimer’s. This underscores the necessity of developing multi-target ligands for effective treatment. This study investigates the potential of phytochemical compounds from Moroccan medicinal plants as multi-target agents against Alzheimer’s disease, employing computational approaches. A virtual screening of 386 phytochemical compounds, followed by an assessment of pharmacokinetic properties and ADMET profiles, led to the identification of two promising compounds, naringenin (C23) and hesperetin (C24), derived from Anabasis aretioides . These compounds exhibit favourable pharmacokinetic profiles and strong binding affinities for the five key targets associated with the disease. Density functional theory, molecular dynamics simulations, and MM-GBSA calculations further confirmed their structural stability, with a slight preference for C24, exhibiting superior intermolecular interactions and overall stability. These findings provide a strong basis for further experimental research, including in vitro and in vivo studies, to substantiate their potential efficacy in Alzheimer’s disease.
Journal Article
The Development of Naringin for Use against Bone and Cartilage Disorders
2023
Bone and cartilage disorders are the leading causes of musculoskeletal disability. There is no absolute cure for all bone and cartilage disorders. The exploration of natural compounds for the potential therapeutic use against bone and cartilage disorders is proving promising. Among these natural chemicals, naringin, a flavanone glycoside, is a potential candidate due to its multifaceted pharmacological activities in bone and cartilage tissues. Emerging studies indicate that naringin may promote osteogenic differentiation, inhibit osteoclast formation, and exhibit protective effects against osteoporosis in vivo and in vitro. Many signaling pathways, such as BMP-2, Wnt/β-catenin, and VEGF/VEGFR, participate in the biological actions of naringin in mediating the pathological development of osteoporosis. In addition, the anti-inflammatory, anti-oxidative stress, and anti-apoptosis abilities of naringin also demonstrate its beneficial effects against bone and cartilage disorders, including intervertebral disc degeneration, osteoarthritis, rheumatoid arthritis, bone and cartilage tumors, and tibial dyschondroplasia. Naringin exhibits protective effects against bone and cartilage disorders. However, more efforts are still needed due to, at least in part, the uncertainty of drug targets. Further biological and pharmacological evaluations of naringin and its applications in bone tissue engineering, particularly its therapeutic effects against osteoporosis, might result in developing potential drug candidates.
Journal Article
The Multifaceted Role of Baicalein in Cancer Management through Modulation of Cell Signalling Pathways
by
Almatroudi, Ahmad
,
Khan, Amjad Ali
,
Rahmani, Arshad Husain
in
Apoptosis
,
baicalein
,
bioavailability
2022
The roles of medicinal plants or their purified bioactive compounds have attracted attention in the field of health sciences due to their low toxicity and minimal side effects. Baicalein is an active polyphenolic compound, isolated from Scutellaria baicalensis, and plays a significant role in the management of different diseases. Epidemiologic studies have proven that there is an inverse association between baicalein consumption and disease severity. Baicalein is known to display anticancer activity through the inhibition of inflammation and cell proliferation. Additionally, the anticancer potential of baicalein is chiefly mediated through the modulation of various cell-signaling pathways, such as the induction of apoptosis, autophagy, cell cycle arrest, inhibition of angiogenesis, signal transducer and activator of transcription 3, and PI3K/Akt pathways, as well as the regulation of other molecular targets. Therefore, the current review aimed to explore the role of baicalein in different types of cancer along with mechanisms of action. Besides this, the synergistic effects with other anti-cancerous drugs and the nano-formulation based delivery of baicalein have also been discussed.
Journal Article
Preparation of Naringenin Nanosuspension and Its Antitussive and Expectorant Effects
by
Wang, Mingyue
,
Han, Meihua
,
Wang, Xiaotong
in
Animals
,
Antitussive Agents - chemical synthesis
,
Antitussive Agents - chemistry
2022
Naringenin (NRG) is a natural flavonoid compound abundantly present in citrus fruits and has the potential to treat respiratory disorders. However, the clinical therapeutic effect of NRG is limited by its low bioavailability due to poor solubility. To enhance the solubility, naringenin nanosuspensions (NRG-NSps) were prepared by applying tocopherol polyethylene glycol succinate (TPGS) as the nanocarrier via the media-milling method. The particle size, morphology, and drug-loading content of NRG-NSps were examined, and the stability was evaluated by detecting particle size changes in different physiological media. NRG-NSps exhibited a flaky appearance with a mean diameter of 216.9 nm, and the drug-loading content was 66.7%. NRG-NSps exhibited good storage stability and media stability. NRG-NSps presented a sustainable release profile, and the cumulative drug-release rate approached approximately 95% within 7 d. NRG-NSps improved the antitussive effect significantly compared with the original NRG, the cough frequency was decreased from 22 to 15 times, and the cough incubation period was prolonged from 85.3 to 121.6 s. Besides, NRG-NSps also enhanced expectorant effects significantly, and phenol red secretion was increased from 1.02 to 1.45 μg/mL. These results indicate that NRG-NSps could enhance the bioavailability of NRG significantly and possess a potential clinical application.
Journal Article