Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,504 result(s) for "Flexible components"
Sort by:
Superstrong, superstiff, and conductive alginate hydrogels
For the practical use of synthetic hydrogels as artificial biological tissues, flexible electronics, and conductive membranes, achieving requirements for specific mechanical properties is one of the most prominent issues. Here, we demonstrate superstrong, superstiff, and conductive alginate hydrogels with densely interconnecting networks implemented via simple reconstructing processes, consisting of anisotropic densification of pre-gel and a subsequent ionic crosslinking with rehydration. The reconstructed hydrogel exhibits broad ranges of exceptional tensile strengths (8–57 MPa) and elastic moduli (94–1,290 MPa) depending on crosslinking ions. This hydrogel can hold sufficient cations (e.g., Li + ) within its gel matrix without compromising the mechanical performance and exhibits high ionic conductivity enough to be utilized as a gel electrolyte membrane. Further, this strategy can be applied to prepare mechanically outstanding, ionic-/electrical-conductive hydrogels by incorporating conducting polymer within the hydrogel matrix. Such hydrogels are easily laminated with strong interfacial adhesion by superficial de- and re-crosslinking processes, and the resulting layered hydrogel can act as a stable gel electrolyte membrane for an aqueous supercapacitor. Specific mechanical properties are one of the most important issues for application of synthetic hydrogels as biological tissue, flexible electronics or in conductive membranes. Here, the authors demonstrate that a reconstruction process consisting of anisotropic densification of pre-gel and subsequent ionic crosslinking and rehydration leads to strong, stiff, and conductive alginate hydrogels with densely interconnecting networks.
A robotic sensory system with high spatiotemporal resolution for texture recognition
Humans can gently slide a finger on the surface of an object and identify it by capturing both static pressure and high-frequency vibrations. Although modern robots integrated with flexible sensors can precisely detect pressure, shear force, and strain, they still perform insufficiently or require multi-sensors to respond to both static and high-frequency physical stimuli during the interaction. Here, we report a real-time artificial sensory system for high-accuracy texture recognition based on a single iontronic slip-sensor, and propose a criterion—spatiotemporal resolution, to corelate the sensing performance with recognition capability. The sensor can respond to both static and dynamic stimuli (0-400 Hz) with a high spatial resolution of 15 μm in spacing and 6 μm in height, together with a high-frequency resolution of 0.02 Hz at 400 Hz, enabling high-precision discrimination of fine surface features. The sensory system integrated on a prosthetic fingertip can identify 20 different commercial textiles with a 100.0% accuracy at a fixed sliding rate and a 98.9% accuracy at random sliding rates. The sensory system is expected to help achieve subtle tactile sensation for robotics and prosthetics, and further be applied to haptic-based virtual reality and beyond. Artificial sensory systems are typically limited by their performance and response to static and dynamic stimuli. Here, Bai et al. propose an iontronic slip-sensor, which responds to both static pressure and high-frequency vibrations up to 400 Hz, achieving high spatiotemporal resolution for texture recognition.
Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation
Ferroelectrics are usually inflexible oxides that undergo brittle deformation. We synthesized freestanding single-crystalline ferroelectric barium titanate (BaTiO₃) membranes with a damage-free lifting-off process. Our BaTiO₃ membranes can undergo a ~180° folding during an in situ bending test, demonstrating a super-elasticity and ultraflexibility. We found that the origin of the super-elasticity was from the dynamic evolution of ferroelectric nanodomains. High stresses modulate the energy landscape markedly and allow the dipoles to rotate continuously between the a and c nanodomains. A continuous transition zone is formed to accommodate the variant strain and avoid high mismatch stress that usually causes fracture. The phenomenon should be possible in other ferroelectrics systems through domain engineering. The ultraflexible epitaxial ferroelectric membranes could enable many applications such as flexible sensors, memories, and electronic skins.
Bio-inspired vertebral design for scalable and flexible perovskite solar cells
The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible perovskite solar cells (PSCs). The degradation is attributed to the brittleness and discrepancy of perovskite crystal growth upon different substrates. Inspired by robust crystallization and flexible structure of vertebrae, herein, we employ a conductive and glued polymer between indium tin oxide and perovskite layers, which simultaneously facilitates oriented crystallization of perovskite and sticks the devices. With the results of experimental characterizations and theoretical simulations, this bionic interface layer accurately controls the crystallization and acts as an adhesive. The flexible PSCs achieve the power conversion efficiencies of 19.87% and 17.55% at effective areas of 1.01 cm 2 and 31.20 cm 2 respectively, retaining over 85% of original efficiency after 7000 narrow bending cycles with negligible angular dependence. Finally, the modules are assembled into a wearable solar-power source, enabling the upscaling of flexible electronics. Flexible perovskite solar cells suffer huge efficiency loss upon area scale-up due to brittleness of ITO and poor perovskite film quality. Here Meng et al. solve this by inserting a conductive and glued polymer layer between ITO and perovskite layers and obtain efficiency of 17% for 30 cm 2 devices.
A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate
Piezoelectric materials produce electricity when strained, making them ideal for different types of sensing applications. The most effective piezoelectric materials are ceramic solid solutions in which the piezoelectric effect is optimized at what are termed morphotropic phase boundaries (MPBs). Ceramics are not ideal for a variety of applications owing to some of their mechanical properties. We synthesized piezoelectric materials from a molecular perovskite (TMFM)ₓ(TMCM)1–x CdCl₃ solid solution (TMFM, trimethylfluoromethyl ammonium; TMCM, trimethylchloromethyl ammonium, 0 ≤ x ≤ 1), in which the MPB exists between monoclinic and hexagonal phases. We found a composition for which the piezoelectric coefficient d 33 is ∼1540 picocoulombs per newton, comparable to high-performance piezoelectric ceramics. The material has potential applications for wearable piezoelectric devices.
Spider-silk-inspired strong and tough hydrogel fibers with anti-freezing and water retention properties
Ideal hydrogel fibers with high toughness and environmental tolerance are indispensable for their long-term application in flexible electronics as actuating and sensing elements. However, current hydrogel fibers exhibit poor mechanical properties and environmental instability due to their intrinsically weak molecular (chain) interactions. Inspired by the multilevel adjustment of spider silk network structure by ions, bionic hydrogel fibers with elaborated ionic crosslinking and crystalline domains are constructed. Bionic hydrogel fibers show a toughness of 162.25 ± 21.99 megajoules per cubic meter, comparable to that of spider silks. The demonstrated bionic structural engineering strategy can be generalized to other polymers and inorganic salts for fabricating hydrogel fibers with broadly tunable mechanical properties. In addition, the introduction of inorganic salt/glycerol/water ternary solvent during constructing bionic structures endows hydrogel fibers with anti-freezing, water retention, and self-regeneration properties. This work provides ideas to fabricate hydrogel fibers with high mechanical properties and stability for flexible electronics. Hydrogel fibres have potential in a range of applications such as flexible electronics, but achieving the desired mechanical properties can be challenging. Here, the authors report spider silk-inspired hydrogel fibres with tuneable mechanical properties suitable for flexible electronics.
Room-temperature high-precision printing of flexible wireless electronics based on MXene inks
Wireless technologies-supported printed flexible electronics are crucial for the Internet of Things (IoTs), human-machine interaction, wearable and biomedical applications. However, the challenges to existing printing approaches remain, such as low printing precision, difficulty in conformal printing, complex ink formulations and processes. Here we present a room-temperature direct printing strategy for flexible wireless electronics, where distinct high-performance functional modules (e.g., antennas, micro-supercapacitors, and sensors) can be fabricated with high resolution and further integrated on various flat/curved substrates. The additive-free titanium carbide (Ti 3 C 2 T x ) MXene aqueous inks are regulated with large single-layer ratio (>90%) and narrow flake size distribution, offering metallic conductivity (~6, 900 S cm −1 ) in the ultrafine-printed tracks (3 μm line gap and 0.43% spatial uniformity) without annealing. In particular, we build an all-MXene-printed integrated system capable of wireless communication, energy harvesting, and smart sensing. This work opens a door for high-precision additive manufacturing of printed wireless electronics at room temperature. High-precision printing of flexible wireless electronics has not been achieved before. Here, the authors leverage a room-temperature direct printing strategy to realize an all-MXene-printed integrated system capable of wireless communication, energy harvesting, and smart sensing.
Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions
Ionic conductive hydrogels prepared from naturally abundant cellulose are ideal candidates for constructing flexible electronics from the perspective of commercialization and environmental sustainability. However, cellulosic hydrogels featuring both high mechanical strength and ionic conductivity remain extremely challenging to achieve because the ionic charge carriers tend to destroy the hydrogen-bonding network among cellulose. Here we propose a supramolecular engineering strategy to boost the mechanical performance and ionic conductivity of cellulosic hydrogels by incorporating bentonite (BT) via the strong cellulose-BT coordination interaction and the ion regulation capability of the nanoconfined cellulose-BT intercalated nanostructure. A strong (compressive strength up to 3.2 MPa), tough (fracture energy up to 0.45 MJ m −3 ), yet highly ionic conductive and freezing tolerant (high ionic conductivities of 89.9 and 25.8 mS cm −1 at 25 and −20 °C, respectively) all-natural cellulose-BT hydrogel is successfully realized. These findings open up new perspectives for the design of cellulosic hydrogels and beyond. Cellulose based ion conductive hydrogels are emerging materials for application in flexible electronics but achieving simultaneously high conductivity and good mechanical properties remains challenging. Here, the authors propose a supramolecular engineering strategy to strengthen cellulosic hydrogel and to improve simultaneously its ionic conductivity and freezing tolerance.
Polyvinyl Alcohol (PVA)-Based Hydrogels: Recent Progress in Fabrication, Properties, and Multifunctional Applications
Polyvinyl alcohol (PVA)-based hydrogels have attracted significant attention due to their excellent biocompatibility, tunable mechanical properties, and ability to form stable three-dimensional networks. This comprehensive review explores the recent advancements in PVA-based hydrogels, focusing on their unique properties, fabrication strategies, and multifunctional applications. Firstly, it discusses various facile synthesis techniques, including freeze/thaw cycles, chemical cross-linking, and enhancement strategies, which have led to enhanced mechanical strength, elasticity, and responsiveness to external stimuli. These improvements have expanded the applicability of PVA-based hydrogels in critical areas such as biomedical, environmental treatment, flexible electronics, civil engineering, as well as other emerging applications. Additionally, the integration of smart functionalities, such as self-healing capabilities and multi-responsiveness, is also examined. Despite progress, challenges remain, including optimizing mechanical stability under varying conditions and addressing potential toxicity of chemical cross-linkers. The review concludes by outlining future perspectives, emphasizing the potential of PVA-based hydrogels in emerging fields like regenerative medicine, environmental sustainability, and advanced manufacturing. It underscores the importance of interdisciplinary collaboration in realizing the full potential of these versatile materials to address pressing societal challenges.
Nonlinearity synergy: An elegant strategy for realizing high-sensitivity and wide-linear-range pressure sensing
Flexible pressure sensors are indispensable components in various applications such as intelligent robots and wearable devices, whereas developing flexible pressure sensors with both high sensitivity and wide linear range remains a great challenge. Here, we present an elegant strategy to address this challenge by taking advantage of a pyramidal carbon foam array as the sensing layer and an elastomer spacer as the stiffness regulator, realizing an unprecedentedly high sensitivity of 24.6 kPa −1 and an ultra-wide linear range of 1.4 MPa together. Such a wide range of linearity is attributed to the synergy between the nonlinear piezoresistivity of the sensing layer and the nonlinear elasticity of the stiffness regulator. The great application potential of our sensor in robotic manipulation, healthcare monitoring, and human-machine interface is demonstrated. Our design strategy can be extended to the other types of flexible sensors calling for both high sensitivity and wide-range linearity, facilitating the development of high-performance flexible pressure sensors for intelligent robotics and wearable devices. The development of flexible pressure sensors with a wide linear range and high sensitivity is challenging. Chen et al. demonstrate a sensor for robotics and wearable devices, using nonlinear elasticity of an elastic spacer as a stiffness regulator and a microstructured sensing layer with non-linear piezoresistivity.