Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,315 result(s) for "Fluorine Radioisotopes"
Sort by:
Serotonin 2A receptor agonist binding in the human brain with 11CCimbi-36: Test–retest reproducibility and head-to-head comparison with the antagonist 18Faltanserin
[11C]Cimbi-36 is a recently developed serotonin 2A (5-HT2A) receptor agonist positron emission tomography (PET) radioligand that has been successfully applied for human neuroimaging. Here, we investigate the test–retest variability of cerebral [11C]Cimbi-36 PET and compare [11C]Cimbi-36 and the 5-HT2A receptor antagonist [18F]altanserin. Sixteen healthy volunteers (mean age 23.9±6.4years, 6 males) were scanned twice with a high resolution research tomography PET scanner. All subjects were scanned after a bolus of [11C]Cimbi-36; eight were scanned twice to determine test–retest variability in [11C]Cimbi-36 binding measures, and another eight were scanned after a bolus plus constant infusion with [18F]altanserin. Regional differences in the brain distribution of [11C]Cimbi-36 and [18F]altanserin were assessed with a correlation of regional binding measures and with voxel-based analysis. Test–retest variability of [11C]Cimbi-36 non-displaceable binding potential (BPND) was consistently <5% in high-binding regions and lower for reference tissue models as compared to a 2-tissue compartment model. We found a highly significant correlation between regional BPNDs measured with [11C]Cimbi-36 and [18F]altanserin (mean Pearson's r: 0.95±0.04) suggesting similar cortical binding of the radioligands. Relatively higher binding with [11C]Cimbi-36 as compared to [18F]altanserin was found in the choroid plexus and hippocampus in the human brain. Excellent test–retest reproducibility highlights the potential of [11C]Cimbi-36 for PET imaging of 5-HT2A receptor agonist binding in vivo. Our data suggest that Cimbi-36 and altanserin both bind to 5-HT2A receptors, but in regions with high 5-HT2C receptor density, choroid plexus and hippocampus, the [11C]Cimbi-36 binding likely represents binding to both 5-HT2A and 5-HT2C receptors. •[11C]Cimbi-36 demonstrated excellent reproducibility as a 5-HT2A receptor agonist PET radioligand in healthy volunteers.•In vivo binding of [11C]Cimbi-36 and [18F]altanserin was highly correlated demonstrating that they both image 5-HT2A receptors in the human brain•In choroid plexus and hippocampus, [11C]Cimbi-36 binding exceeded [18F]altanserin binding suggesting high density of 5-HT2C receptors here.•[11C]Cimbi-36 may be used to detect both 5-HT2A and 5-HT2C receptor binding in the human brain
Methods to Enhance the Metabolic Stability of Peptide-Based PET Radiopharmaceuticals
The high affinity and specificity of peptides towards biological targets, in addition to their favorable pharmacological properties, has encouraged the development of many peptide-based pharmaceuticals, including peptide-based positron emission tomography (PET) radiopharmaceuticals. However, the poor in vivo stability of unmodified peptides against proteolysis is a major challenge that must be overcome, as it can result in an impractically short in vivo biological half-life and a subsequently poor bioavailability when used in imaging and therapeutic applications. Consequently, many biologically and pharmacologically interesting peptide-based drugs may never see application. A potential way to overcome this is using peptide analogues designed to mimic the pharmacophore of a native peptide while also containing unnatural modifications that act to maintain or improve the pharmacological properties. This review explores strategies that have been developed to increase the metabolic stability of peptide-based pharmaceuticals. It includes modifications of the C- and/or N-termini, introduction of d- or other unnatural amino acids, backbone modification, PEGylation and alkyl chain incorporation, cyclization and peptide bond substitution, and where those strategies have been, or could be, applied to PET peptide-based radiopharmaceuticals.
One-Pot Radiosynthesis and Biological Evaluation of a Caspase-3 Selective 5-123,125Iiodo-1,2,3-triazole derived Isatin SPECT Tracer
Induction of apoptosis is often necessary for successful cancer therapy, and the non-invasive monitoring of apoptosis post-therapy could assist in clinical decision making. Isatins are a class of compounds that target activated caspase-3 during apoptosis. Here we report the synthesis of the 5-iodo-1,2,3-triazole (FITI) analog of the PET tracer [ 18 F]ICMT11 as a candidate tracer for imaging of apoptosis with SPECT, as well as PET. Labelling with radioiodine ( 123,125 I) was achieved in 55 ± 12% radiochemical yield through a chelator-accelerated one-pot cycloaddition reaction mediated by copper(I) catalysis. The caspase-3 binding affinity and selectivity of FITI compares favourably to that of [ 18 F]ICMT11 (K i = 6.1 ± 0.9 nM and 12.4 ± 4.7 nM, respectively). In biodistribution studies, etoposide-induced cell death in a SW1222 xenograft model resulted in a 2-fold increase in tumour uptake of the tracer. However, the tumour uptake was too low to allow in vivo imaging of apoptosis with SPECT.
Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease
Tissue macrophage numbers vary during health versus disease. Abundant inflammatory macrophages destruct tissues, leading to atherosclerosis, myocardial infarction and heart failure. Emerging therapeutic options create interest in monitoring macrophages in patients. Here we describe positron emission tomography (PET) imaging with 18 F-Macroflor, a modified polyglucose nanoparticle with high avidity for macrophages. Due to its small size, Macroflor is excreted renally, a prerequisite for imaging with the isotope flourine-18. The particle’s short blood half-life, measured in three species, including a primate, enables macrophage imaging in inflamed cardiovascular tissues. Macroflor enriches in cardiac and plaque macrophages, thereby increasing PET signal in murine infarcts and both mouse and rabbit atherosclerotic plaques. In PET/magnetic resonance imaging (MRI) experiments, Macroflor PET imaging detects changes in macrophage population size while molecular MRI reports on increasing or resolving inflammation. These data suggest that Macroflor PET/MRI could be a clinical tool to non-invasively monitor macrophage biology. In vivo imaging of inflammation is crucial for detection and monitoring of many pathologies and noninvasive macrophage quantification has been suggested as a possible approach. Here Keliher et al . describe novel polyglucose nanoparticle tracers that are rapidly excreted by the kidney and with high affinity for macrophages in atherosclerotic plaques.
Comparison of the pharmacokinetics between L-BPA and L-FBPA using the same administration dose and protocol: a validation study for the theranostic approach using 18F-L-FBPA positron emission tomography in boron neutron capture therapy
Background Boron neutron capture therapy (BNCT) is a cellular-level particle radiation therapy that combines the selective delivery of boron compounds to tumour tissue with neutron irradiation. L- p -Boronophenylalanine (L-BPA) is a boron compound now widely used in clinical situations. Determination of the boron distribution is required for successful BNCT prior to neutron irradiation. Thus, positron emission tomography with [ 18 F]-L-FBPA, an 18 F-labelled radiopharmaceutical analogue of L-BPA, was developed. However, several differences between L-BPA and [ 18 F]-L-FBPA have been highlighted, including the different injection doses and administration protocols. The purpose of this study was to clarify the equivalence between L-BPA and [ 19 F]-L-FBPA as alternatives to [ 18 F]-L-FBPA. Methods SCC-VII was subcutaneously inoculated into the legs of C3H/He mice. The same dose of L-BPA or [ 19 F]-L-FBPA was subcutaneously injected. The time courses of the boron concentrations in blood, tumour tissue, and normal tissue were compared between the groups. Next, we administered the therapeutic dose of L-BPA or the same dose of [ 19 F]-L-FBPA by continuous infusion and compared the effects of the administration protocol on boron accumulation in tissues. Results There were no differences between L-BPA and [ 19 F]-L-FBPA in the transition of boron concentrations in blood, tumour tissue, and normal tissue using the same administration protocol. However, the normal tissue to blood ratio of the boron concentrations in the continuous-infusion group was lower than that in the subcutaneous injection group. Conclusions No difference was noted in the time course of the boron concentrations in tumour tissue and normal tissues between L-BPA and [ 19 F]-L-FBPA. However, the administration protocol had effects on the normal tissue to blood ratio of the boron concentration. In estimating the BNCT dose in normal tissue by positron emission tomography (PET), we should consider the possible overestimation of the normal tissue to blood ratio of the boron concentrations derived from the values measured by PET on dose calculation.
18FGTP1 (Genentech Tau Probe 1), a radioligand for detecting neurofibrillary tangle tau pathology in Alzheimer’s disease
ObjectiveNeurofibrillary tangles (NFTs), consisting of intracellular aggregates of the tau protein, are a pathological hallmark of Alzheimer’s disease (AD). Here we report the identification and initial characterization of Genentech Tau Probe 1 ([18F]GTP1), a small-molecule PET probe for imaging tau pathology in AD patients.MethodsAutoradiography using human brain tissues from AD donors and protein binding panels were used to determine [18F]GTP1 binding characteristics. Stability was evaluated in vitro and in vivo in mice and rhesus monkey. In the clinic, whole-body imaging was performed to assess biodistribution and dosimetry. Dynamic [18F]GTP1 brain imaging and input function measurement were performed on two separate days in 5 β-amyloid plaque positive (Aβ+) AD and 5 β-amyloid plaque negative (Aβ-) cognitive normal (CN) participants. Tracer kinetic modeling was applied and reproducibility was evaluated. SUVR was calculated and compared to [18F]GTP1-specific binding parameters derived from the kinetic modeling. [18F]GTP1 performance in a larger cross-sectional group of 60 Aβ+ AD participants and ten (Aβ- or Aβ+) CN was evaluated with images acquired 60 to 90 min post tracer administration.Results[18F]GTP1 exhibited high affinity and selectivity for tau pathology with no measurable binding to β-amyloid plaques or MAO-B in AD tissues, or binding to other tested proteins at an affinity predicted to impede image data interpretation. In human, [18F]GTP1 exhibited favorable dosimetry and brain kinetics, and no evidence of defluorination. [18F]GTP1-specific binding was observed in cortical regions of the brain predicted to contain tau pathology in AD and exhibited low (< 4%) test-retest variability. SUVR measured in the 60 to 90-min interval post injection correlated with tracer-specific binding (slope = 1.36, r2 = 0.98). Furthermore, in a cross-sectional population, the degree of [18F]GTP1-specific binding increased with AD severity and could differentiate diagnostic cohorts.Conclusions[18F]GTP1 is a promising PET probe for the study of tau pathology in AD.
Kit-based synthesis of 2-deoxy-2-18F-fluoro-d-sorbitol for bacterial imaging
Clinically available imaging tools for diagnosing infections rely on structural changes in the affected tissues. They therefore lack specificity and cannot differentiate between oncologic, inflammatory and infectious processes. We have developed 2-deoxy-2-[ 18 F]fluoro- d -sorbitol ( 18 F-FDS) as an imaging agent to visualize infections caused by Enterobacterales, which represent the largest group of bacterial pathogens in humans and are responsible for severe infections, often resulting in sepsis or death. A clinical study in 26 prospectively enrolled patients demonstrated that 18 F-FDS positron emission tomography (PET) was safe, and could detect and localize infections due to drug-susceptible or multi-drug-resistant Enterobacterales strains as well as differentiate them from other pathologies (sterile inflammation or cancer). 18 F-FDS is cleared almost exclusively through renal filtration and has also shown potential as a PET agent for functional renal imaging. Since most PET radionuclides have a short half-life, maximal clinical impact will require fast, on-demand synthesis with limited infrastructure and personnel. To meet this demand, we developed a kit-based solid phase method that uses commercially and widely available 2-deoxy-2-[ 18 F]fluoro- d -glucose as the precursor and allows 18 F-FDS to be produced and purified in one step at room temperature. The 18 F-FDS kit consists of a solid-phase extraction cartridge packed with solid supported borohydride (MP-borohydride), which can be attached to a second cartridge to reduce pH. We evaluated the effects of different solid supported borohydride reagents, cartridge size, starting radioactivity, volumes and flow rates in the radiochemical yield and purity. The optimized protocol can be completed in <30 min and allows the synthesis of 18 F-FDS in >70% radiochemical yield and >90% radiochemical purity. Mota et al. describe a protocol for the rapid, room-temperature, kit-based synthesis of 18 F-FDS for positron emission tomography imaging.
Quantification of 18FDPA-714 Binding in the Human Brain: Initial Studies in Healthy Controls and Alzheimer'S Disease Patients
Fluorine-18 labelled N,N-diethyl-2-(2-[4-(2-fluoroethoxy)phenyl]-5,7-dimethylpyrazolo[1,5-α]pyrimidine-3-yl)acetamide ([18F] DPA-714) binds to the 18-kDa translocator protein (TSPO) with high affinity. The aim of this initial methodological study was to develop a plasma input tracer kinetic model for quantification of [18F]DPA-714 binding in healthy subjects and Alzheimer's disease (AD) patients, and to provide a preliminary assessment whether there is a disease-related signal. Ten AD patients and six healthy subjects underwent a dynamic positron emission tomography (PET) study along with arterial sampling and a scan protocol of 150 minutes after administration of 250 ± 10 MBq [18F]DPA-714. The model that provided the best fits to tissue time activity curves (TACs) was selected based on Akaike Information Criterion and F-test. The reversible two tissue compartment plasma input model with blood volume parameter was the preferred model for quantification of [18F]DPA-714 kinetics, irrespective of scan duration, volume of interest, and underlying volume of distribution (VT). Simplified reference tissue model (SRTM)-derived binding potential (BPND) using cerebellar gray matter as reference tissue correlated well with plasma input-based distribution volume ratio (DVR). These data suggest that [18F]DPA-714 cannot be used for separating individual AD patients from heathy subjects, but further studies including TSPO binding status are needed to substantiate these findings.
Dynamic PET Measures of Tau Accumulation in Cognitively Normal Older Adults and Alzheimer’s Disease Patients Measured Using 18F THK-5351
[18F]THK5351, a recently-developed positron emission tomography (PET) tracer for measuring tau neurofibrillary tangle accumulation, may help researchers examine aging, disease, and tau pathology in living human brains. We examined THK5351 tracer pharmacokinetics to define an optimal acquisition time for static late images. Primary measurements were calculation of regional values of distribution volume ratios (DVR) and standardized uptake value ratios (SUVR) in 6 healthy older control and 10 Alzheimer's disease (AD) participants. We examined associations between DVR and SUVR, searching for a 20 min SUVR time window that was stable and comparable to DVR. We additionally examined diagnostic group differences in this 20 min SUVR. In healthy controls, [18F]THK5351 uptake was low, with increased temporal relative to frontal binding. In AD, regional uptake was substantially higher than in healthy controls, with temporal exceeding frontal binding. Retention in cerebellar gray matter, which was used as the reference region, was low compared to other regions. Both DVR and SUVR values showed minimal change over time after 40 min. SUVR 20-40, 30-50, and 40-60 min were most consistently correlated with DVR; SUVR 40-60 min, the most stable time window, was used in further analyses. Significant (AD > healthy control) group differences existed in temporoparietal regions, with marginal medial temporal differences. We found high basal ganglia SUVR 40-60 min signal, with no group differences. We examined THK5351, a new PET tracer for measuring tau accumulation, and compared multiple analysis methods for quantifying regional tracer uptake. SUVR 40-60 min performed optimally when examining 20 min SUVR windows, and appears to be a practical method for quantifying relative regional tracer retention. The results of this study offer clinical potential, given the usefulness of THK5351-PET as a biomarker of tau pathology in aging and disease.
Economical droplet-based microfluidic production of 18FFET and 18FFlorbetaben suitable for human use
Current equipment and methods for preparation of radiopharmaceuticals for positron emission tomography (PET) are expensive and best suited for large-scale multi-doses batches. Microfluidic radiosynthesizers have been shown to provide an economic approach to synthesize these compounds in smaller quantities, but can also be scaled to clinically-relevant levels. Batch microfluidic approaches, in particular, offer significant reduction in system size and reagent consumption. Here we show a simple and rapid technique to concentrate the radioisotope, prior to synthesis in a droplet-based radiosynthesizer, enabling production of clinically-relevant batches of [ 18 F]FET and [ 18 F]FBB. The synthesis was carried out with an automated synthesizer platform based on a disposable Teflon-silicon surface-tension trap chip. Up to 0.1 mL (4 GBq) of radioactivity was used per synthesis by drying cyclotron-produced aqueous [ 18 F]fluoride in small increments directly inside the reaction site. Precursor solution (10 µL) was added to the dried [ 18 F]fluoride, the reaction chip was heated for 5 min to perform radiofluorination, and then a deprotection step was performed with addition of acid solution and heating. The product was recovered in 80 µL volume and transferred to analytical HPLC for purification. Purified product was formulated via evaporation and resuspension or a micro-SPE formulation system. Quality control testing was performed on 3 sequential batches of each tracer. The method afforded production of up to 0.8 GBq of [ 18 F]FET and [ 18 F]FBB. Each production was completed within an hour. All batches passed quality control testing, confirming suitability for human use. In summary, we present a simple and efficient synthesis of clinically-relevant batches of [ 18 F]FET and [ 18 F]FBB using a microfluidic radiosynthesizer. This work demonstrates that the droplet-based micro-radiosynthesizer has a potential for batch-on-demand synthesis of 18 F-labeled radiopharmaceuticals for human use.