Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
348,932 result(s) for "Food -- Analysis"
Sort by:
The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide
Background A plant-based diet protects against chronic oxidative stress-related diseases. Dietary plants contain variable chemical families and amounts of antioxidants. It has been hypothesized that plant antioxidants may contribute to the beneficial health effects of dietary plants. Our objective was to develop a comprehensive food database consisting of the total antioxidant content of typical foods as well as other dietary items such as traditional medicine plants, herbs and spices and dietary supplements. This database is intended for use in a wide range of nutritional research, from in vitro and cell and animal studies, to clinical trials and nutritional epidemiological studies. Methods We procured samples from countries worldwide and assayed the samples for their total antioxidant content using a modified version of the FRAP assay. Results and sample information (such as country of origin, product and/or brand name) were registered for each individual food sample and constitute the Antioxidant Food Table. Results The results demonstrate that there are several thousand-fold differences in antioxidant content of foods. Spices, herbs and supplements include the most antioxidant rich products in our study, some exceptionally high. Berries, fruits, nuts, chocolate, vegetables and products thereof constitute common foods and beverages with high antioxidant values. Conclusions This database is to our best knowledge the most comprehensive Antioxidant Food Database published and it shows that plant-based foods introduce significantly more antioxidants into human diet than non-plant foods. Because of the large variations observed between otherwise comparable food samples the study emphasizes the importance of using a comprehensive database combined with a detailed system for food registration in clinical and epidemiological studies. The present antioxidant database is therefore an essential research tool to further elucidate the potential health effects of phytochemical antioxidants in diet.
Dispersive liquid–liquid microextraction in food analysis. A critical review
An extensive critical evaluation of the application of dispersive liquid–liquid microextraction (DLLME) combined with chromatographic and atomic-spectroscopic methods for the determination of organic and inorganic compounds is presented. The review emphasizes the procedures used for the prior treatment of food samples, which are very different from the DLLME procedures generally proposed for water samples. The main contribution of this work in the field of DLLME reviews is its critical review of the abundant literature showing the increasing interest and practical advantages of using DLLME and closely related microextraction techniques for food analysis.
Molecularly Imprinted Polymers Combined with Electrochemical Sensors for Food Contaminants Analysis
Detection of relevant contaminants using screening approaches is a key issue to ensure food safety and respect for the regulatory limits established. Electrochemical sensors present several advantages such as rapidity; ease of use; possibility of on-site analysis and low cost. The lack of selectivity for electrochemical sensors working in complex samples as food may be overcome by coupling them with molecularly imprinted polymers (MIPs). MIPs are synthetic materials that mimic biological receptors and are produced by the polymerization of functional monomers in presence of a target analyte. This paper critically reviews and discusses the recent progress in MIP-based electrochemical sensors for food safety. A brief introduction on MIPs and electrochemical sensors is given; followed by a discussion of the recent achievements for various MIPs-based electrochemical sensors for food contaminants analysis. Both electropolymerization and chemical synthesis of MIP-based electrochemical sensing are discussed as well as the relevant applications of MIPs used in sample preparation and then coupled to electrochemical analysis. Future perspectives and challenges have been eventually given.
Optical sensors for determination of biogenic amines in food
This review presents the state-of-the-art of optical sensors for determination of biogenic amines (BAs) in food by publications covering about the last 10 years. Interest in the development of rapid and preferably on-site methods for quantification of BAs is based on their important role in implementation and regulation of various physiological processes. At the same time, BAs can develop in different kinds of food by fermentation processes or microbial activity or arise due to contamination, which induces toxicological risks and food poisoning and causes serious health issues. Therefore, various optical chemosensor systems have been devised that are easy to assemble and fast responding and low-cost analytical tools. If amenable to on-site analysis, they are an attractive alternative to existing instrumental analytical methods used for BA determination in food. Hence, also portable sensor systems or dipstick sensors are described based on various probes that typically enable signal readouts such as photometry, reflectometry, luminescence, surface-enhanced Raman spectroscopy, or ellipsometry. The quantification of BAs in real food samples and the design of the sensors are highlighted and the analytical figures of merit are compared. Future instrumental trends for BA sensing point to the use of cell phone–based fully automated optical evaluation and devices that could even comprise microfluidic micro total analysis systems.
Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials
Raman scattering is an inelastic phenomenon. Although its cross section is very small, recent advances in electronics, lasers, optics, and nanotechnology have made Raman spectroscopy suitable in many areas of application. The present article reviews the applications of Raman spectroscopy in food and drug analysis and inspection, including those associated with nanomaterials. Brief overviews of basic Raman scattering theory, instrumentation, and statistical data analysis are also given. With the advent of Raman enhancement mechanisms and the progress being made in metal nanomaterials and nanoscale metal surfaces fabrications, surface enhanced Raman scattering spectroscopy has become an extra sensitive method, which is applicable not only for analysis of foods and drugs, but also for intracellular and intercellular imaging. A Raman spectrometer coupled with a fiber optics probe has great potential in applications such as monitoring and quality control in industrial food processing, food safety in agricultural plant production, and convenient inspection of pharmaceutical products, even through different types of packing. A challenge for the routine application of surface enhanced Raman scattering for quantitative analysis is reproducibility. Success in this area can be approached with each or a combination of the following methods: (1) fabrication of nanostructurally regular and uniform substrates; (2) application of statistic data analysis; and (3) isotopic dilution.