Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
173 result(s) for "Fusobacterium nucleatum - immunology"
Sort by:
Fusobacterium nucleatum Secretes Outer Membrane Vesicles and Promotes Intestinal Inflammation
Several studies have identified an increased abundance of Fusobacterium in the intestinal tracts of patients with colon cancer, liver cirrhosis, primary sclerosing cholangitis, gastroesophageal reflux disease, HIV infection, and alcoholism. However, the direct mechanism(s) of action of Fusobacterium on pathophysiological within the gastrointestinal tract is unclear. Multiple studies have implicated microbes in the development of inflammation, but the mechanisms remain unknown. Bacteria in the genus Fusobacterium have been identified in the intestinal mucosa of patients with digestive diseases; thus, we hypothesized that Fusobacterium nucleatum promotes intestinal inflammation. The addition of >50 kDa F. nucleatum conditioned media, which contain outer membrane vesicles (OMVs), to colonic epithelial cells stimulated secretion of the proinflammatory cytokines interleukin-8 (IL-8) and tumor necrosis factor (TNF). In addition, purified F. nucleatum OMVs, but not compounds <50 kDa, stimulated IL-8 and TNF production; which was decreased by pharmacological inhibition of Toll-like receptor 4 (TLR4). These effects were linked to downstream effectors p-ERK, p-CREB, and NF-κB. F. nucleatum >50-kDa compounds also stimulated TNF secretion, p-ERK, p-CREB, and NF-κB activation in human colonoid monolayers. In mice harboring a human microbiota, pretreatment with antibiotics and a single oral gavage of F. nucleatum resulted in inflammation. Compared to mice receiving vehicle control, mice treated with F. nucleatum showed disruption of the colonic architecture, with increased immune cell infiltration and depleted mucus layers. Analysis of mucosal gene expression revealed increased levels of proinflammatory cytokines (KC, TNF, IL-6, IFN-γ, and MCP-1) at day 3 and day 5 in F. nucleatum -treated mice compared to controls. These proinflammatory effects were absent in mice who received F. nucleatum without pretreatment with antibiotics, suggesting that an intact microbiome is protective against F. nucleatum -mediated immune responses. These data provide evidence that F. nucleatum promotes proinflammatory signaling cascade s in the context of a depleted intestinal microbiome. IMPORTANCE Several studies have identified an increased abundance of Fusobacterium in the intestinal tracts of patients with colon cancer, liver cirrhosis, primary sclerosing cholangitis, gastroesophageal reflux disease, HIV infection, and alcoholism. However, the direct mechanism(s) of action of Fusobacterium on pathophysiological within the gastrointestinal tract is unclear. These studies have identified that F. nucleatum subsp. polymorphum releases outer membrane vesicles which activate TLR4 and NF-κB to stimulate proinflammatory signals in vitro . Using mice harboring a human microbiome, we demonstrate that F. nucleatum can promote inflammation, an effect which required antibiotic-mediated alterations in the gut microbiome. Collectively, these results suggest a mechanism by which F. nucleatum may contribute to intestinal inflammation.
Fusobacterium nucleatum and oral cancer: a critical review
There is a growing level of interest in the potential role inflammation has on the initiation and progression of malignancy. Notable examples include Helicobacter pylori -mediated inflammation in gastric cancer and more recently Fusobacterium nucleatum -mediated inflammation in colorectal cancer. Fusobacterium nucleatum is a Gram-negative anaerobic bacterium that was first isolated from the oral cavity and identified as a periodontal pathogen. Biofilms on oral squamous cell carcinomas are enriched with anaerobic periodontal pathogens, including F. nucleatum, which has prompted hypotheses that this bacterium could contribute to oral cancer development. Recent studies have demonstrated that F. nucleatum can promote cancer by several mechanisms; activation of cell proliferation, promotion of cellular invasion, induction of chronic inflammation and immune evasion. This review provides an update on the association between F. nucleatum and oral carcinogenesis, and provides insights into the possible mechanisms underlying it.
Relationship between Fusobacterium nucleatum and antitumor immunity in colorectal cancer liver metastasis
Fusobacterium nucleatum has been detected in 8%‐13% of human colorectal cancer, and shown to inhibit immune responses against primary colorectal tumors in animal models. Thus, we hypothesized that the presence of F. nucleatum might be associated with reduced T cell density in colorectal cancer liver metastases (CRLM). We quantified F. nucleatum DNA in 181 CRLM specimens using quantitative PCR assay. The densities of CD8+ T cells, CD33+ cells (marker for myeloid‐derived suppressor cells [MDSCs]), and CD163+ cells (marker for tumor‐associated macrophages [TAMs]) in CRLM tissue were determined by immunohistochemical staining. Fusobacterium nucleatum was detected in eight (4.4%) of 181 CRLM specimens. Compared with F. nucleatum‐negative CRLM, F. nucleatum‐positive CRLM showed significantly lower density of CD8+ T cells (P = .033) and higher density of MDSCs (P = .001). The association of F. nucleatum with the density of TAMs was not statistically significant (P = .70). The presence of F. nucleatum is associated with a lower density of CD8+ T cells and a higher density of MDSCs in CRLM tissue. Upon validation, our findings could provide insights to develop strategies that involve targeting microbiota and immune cells for the prevention and treatment of CRLM. Fusobacterium nucleatum was detected in eight (4.4%) of 181 colorectal cancer liver metastasis tissue. We found that the presence of F. nucleatum was associated with lower CD8+ T cell density and greater densities of both myeloid‐derived suppressor cells and tumor‐associated macrophages.
Fusobacterium nucleatum promotes M2 polarization of macrophages in the microenvironment of colorectal tumours via a TLR4-dependent mechanism
Fusobacterium nucleatum (Fn) has been shown to promote colorectal cancer (CRC) development by inhibiting host anti-tumour immunity. However, the impact of Fn infection on macrophage polarization and subsequent intestinal tumour formation as well as the underlying molecular pathways has not been investigated. We investigated the impact of Fn infection on macrophage polarization in human CRCs and cultured macrophages as well as the effects on macrophage phenotype and intestinal tumour formation in ApcMin/+ mice. We also examined whether macrophage-polarized activation challenged by Fn infection via a TLR4-dependent mechanism involved the IL-6/STAT3/c-MYC signalling cascade. Our data showed that macrophages are a major tumour-infiltrating immune cell type in human CRCs with Fn infection (P < 0.001). Fn infection increased M2 polarization of macrophages in vitro and in vivo, leading to intestinal tumour growth in ApcMin/+ mice. Moreover, Fn infection induced high expression of TLR4, IL-6, STAT3, p-STAT3, and c-MYC in cultured macrophages challenged with Fn, which was blocked by TAK-242 pre-treatment (P < 0.05). Interestingly, c-MYC protein was mainly co-localized with CD206+ M2 macrophages with Fn infection. In conclusion, we show that Fn infection increased M2 polarization of macrophages in vitro and in vivo. Furthermore, Fn infection enhanced colorectal tumour growth in a TLR4-dependent manner involving activation of the IL-6/p-STAT3/c-MYC signalling pathway. For the first time, our results indicate an immunosuppressive effect of Fn by promoting M2 polarization of macrophages through a TLR4-dependent mechanism, which may serve as a promising target for immunotherapy of Fn-related CRC.
Fn-OMV potentiates ZBP1-mediated PANoptosis triggered by oncolytic HSV-1 to fuel antitumor immunity
Oncolytic viruses (OVs) show promise as a cancer treatment by selectively replicating in tumor cells and promoting antitumor immunity. However, the current immunogenicity induced by OVs for tumor treatment is relatively weak, necessitating a thorough investigation of the mechanisms underlying its induction of antitumor immunity. Here, we show that HSV-1-based OVs (oHSVs) trigger ZBP1-mediated PANoptosis (a unique innate immune inflammatory cell death modality), resulting in augmented antitumor immune effects. Mechanistically, oHSV enhances the expression of interferon-stimulated genes, leading to the accumulation of endogenous Z-RNA and subsequent activation of ZBP1. To further enhance the antitumor potential of oHSV, we conduct a screening and identify Fusobacterium nucleatum outer membrane vesicle ( Fn -OMV) that can increase the expression of PANoptosis execution proteins. The combination of Fn -OMV and oHSV demonstrates potent antitumor immunogenicity. Taken together, our study provides a deeper understanding of oHSV-induced antitumor immunity, and demonstrates a promising strategy that combines oHSV with Fn -OMV. The potential of oncolytic virus (OV) for cancer therapy is limited by the efficiency of immune response induced. Here the authors show that HSV-1-based OV is capable of triggering ZBP1-mediated PANoptosis resulting in effective tumor growth inhibition.
Differential immune microenvironmental features of microsatellite-unstable colorectal cancers according to Fusobacterium nucleatum status
It has been suggested that Fusobacterium nucleatum (Fn) may differentially impact tumor immune responses according to microsatellite instability (MSI) status in colorectal cancers (CRCs). We aimed to reveal the detailed relationship between intratumoral Fn and immune microenvironmental features in MSI-high CRCs. A total of 126 MSI-high CRCs were subjected to analyses for intratumoral Fn DNA load using quantitative PCR and for densities of tumor-infiltrating immune cells, including CD3+ T cells, CD4+ T cells, CD8+ T cells, FoxP3+ T cells, CD68+ macrophages, CD163+ macrophages, and CD177+ neutrophils, at invasive margin (IM) and center of tumor (CT) areas using computational image analysis of immunohistochemistry. Based on the Fn load, the 126 MSI-high CRCs were classified into Fn-high, -low, and -negative subgroups. The Fn-high subset of MSI-high CRCs was significantly correlated with larger tumor size and advanced invasion depth (p = 0.017 and p = 0.034, respectively). Compared with the Fn-low/negative subgroup, Fn-high tumors demonstrated significantly lower density of FoxP3+ cells in both IM and CT areas (p = 0.002 and p = 0.003, respectively). Additionally, Fn-high was significantly associated with elevated CD163+ cell to CD68+ cell ratio in only CT areas of MSI-high CRCs (p = 0.028). In conclusion, the Fn-enriched subset of MSI-high CRCs is characterized by increased tumor growth and invasion and distinct immune microenvironmental features, including decreased FoxP3+ T cells throughout the tumor and increased proportion of M2-polarized macrophages in the tumor center. These findings collectively support that Fn may be linked to pro-tumoral immune responses in MSI-high CRCs.
TLR2/TLR4 activation induces Tregs and suppresses intestinal inflammation caused by Fusobacterium nucleatum in vivo
Toll-like receptors (TLRs) 2 and 4 play critical roles in intestinal inflammation caused by Fusobacterium nucleatum (F. nucleatum) infection, but the role of TLR2/TLR4 in regulation of proinflammatory cytokines remains unknown. In this study, through microarray analysis and qRT-PCR, we showed that TLR2/TLR4 are involved in the F. nucleatum-induced inflammatory signaling pathway in Caco-2 cells, C57BL/6 mice and human clinical specimens. In TLR2-/- and TLR4-/- mice, F. nucleatum infection resulted in increased colonization of the bacteria and production of the proinflammatory cytokines IL-8, IL-1β and TNF-α. In addition, the ratio of Foxp3+ CD4+ T cells in the total CD4+ T cells in TLR2-/- and TLR4-/- mice was less than that in wild-type mice, and the ratio in hybrid mice was more than that in knockout mice, which suggested that TLR2/TLR4 mediated the number of Tregs. Furthermore, it was observed that inflammatory cytokine levels were reduced in TLR2-/- mice after Treg transfer. Thus, these data indicate that TLR2/TLR4 regulate F. nucleatum-induced inflammatory cytokines through Tregs in vivo.
Structural basis of Fusobacterium nucleatum adhesin Fap2 interaction with receptors on cancer and immune cells
Fusobacterium nucleatum is overrepresented in the colon microbiome of colorectal cancer patients and has been associated with tumor growth enhancement and metastasis. A pivotal pathogenic factor, the autotransporter adhesin Fap2, facilitates association to cancer and immune cells via the receptors Gal-GalNAc and TIGIT, respectively, leading to deactivation of immune cells. Mechanistic details of the Fap2/TIGIT interaction remain elusive as no structural data are available. Here, we report a system to recombinantly express functional Fap2 on the Escherichia coli surface, which interacts with Gal-GalNAc on cancer cells and with purified TIGIT with submicromolar affinity. Cryo-EM structures of Fap2, alone and in complex with TIGIT, show that the elongated ~50 nm long Fap2 extracellular region binds to TIGIT on its membrane-distal tip via an extension of a β-helix domain. Moreover, by combining structure predictions, cryo-EM, docking and molecular dynamics simulations, we identified a binding pit for Gal-GalNAc on the tip of Fap2. Fusobacterium nucleatum promotes colorectal cancer via its adhesin Fap2. Here, Schöpf et al. show the molecular basis for Fap2 interaction with its receptors TIGIT on immune cells and Gal-GalNAc on tumor cells using cryo-EM and integrative modeling.
Fusobacterium Nucleatum in Colorectal Cancer: Relationship Among Immune Modulation, Potential Biomarkers and Therapeutic Implications
Fusobacterium nucleatum (Fn) has been increasingly recognized as a crucial mediator of colorectal cancer (CRC) biology, particularly in microsatellite-stable (MSS) tumors, where immune checkpoint inhibitors (ICIs) have shown limited efficacy. Rather than representing a passive microbial passenger, Fn actively shapes tumor behavior by adhering to epithelial cells, activating oncogenic signaling, and promoting epithelial–mesenchymal transition (EMT). At the same time, it remodels the tumor microenvironment, driving immune suppression through inhibitory receptor engagement, accumulation of myeloid-derived cells, and metabolic reprogramming of tumor-associated macrophages. These mechanisms converge to impair cytotoxic immunity and contribute to both intrinsic and acquired resistance to ICIs. Beyond immune escape, Fn interferes with conventional chemotherapy by sustaining autophagy and blocking ferroptosis, thereby linking microbial colonization to multidrug resistance. Most of these mechanisms derive from preclinical in vitro and in vivo models, where causal relationships can be inferred. In contrast, human data are mainly observational and provide correlative evidence without proving causality. No interventional clinical studies directly targeting Fn have yet been conducted. Its enrichment across the adenoma–carcinoma sequence and consistent detection in both tumor and fecal samples highlight its potential as a biomarker for early detection and patient stratification. Importantly, multidimensional stool assays that integrate microbial, genetic, and epigenetic markers are emerging as promising non-invasive tools for CRC screening. Therapeutic strategies targeting Fn are also under exploration, ranging from antibiotics and bacteriophages to multifunctional nanodrugs, dietary modulation, and natural microbiota-derived products. These approaches may not only reduce microbial burden but also restore immune competence and enhance the efficacy of immunotherapy in MSS CRC. Altogether, current evidence positions Fn at the intersection of microbial dysbiosis, tumor progression, and therapy resistance. A deeper understanding of its pathogenic role may support the integration of microbial profiling into precision oncology frameworks, paving the way for innovative diagnostic and therapeutic strategies in CRC.
Less is more! Low amount of Fusobacterium nucleatum supports macrophage-mediated trophoblast functions in vitro
F. nucleatum , involved in carcinogenesis of colon carcinomas, has been described as part of the commensal flora of the female upper reproductive tract. Although its contribution to destructive inflammatory processes is well described, its role as commensal uterine bacteria has not been thoroughly investigated. Since carcinogenesis shares similar mechanisms with early pregnancy development (including proliferation, invasion, blood supply and the induction of tolerance), these mechanisms induced by F. nucleatum could play a role in early pregnancy. Additionally, implantation and placentation require a well-balanced immune activation, which might be suitably managed by the presence of a limited amount of bacteria or bacterial residues. We assessed the effect of inactivated F. nucleatum on macrophage-trophoblast interactions. Monocytic cells (THP-1) were polarized into M1, M2a or M2c macrophages by IFN-γ, IL-4 or TGF-β, respectively, and subsequently treated with inactivated fusobacteria (bacteria:macrophage ratio of 0.1 and 1). Direct effects on macrophages were assessed by viability assay, flow cytometry (antigen presentation molecules and cytokines), qPCR (cytokine expression), in-cell Western (HIF and P-NF-κB) and ELISA (VEGF secretion). The function of first trimester extravillous trophoblast cells (HTR-8/SVneo) in response to macrophage-conditioned medium was microscopically assessed by migration (scratch assay), invasion (sprouting assay) and tube formation. Underlying molecular changes were investigated by ELISA (VEGF secretion) and qPCR (matrix-degrading factors and regulators). Inflammation-primed macrophages (M1) as well as high bacterial amounts increased pro-inflammatory NF-κB expression and inflammatory responses. Subsequently, trophoblast functions were impaired. In contrast, low bacterial stimulation caused an increased HIF activation and subsequent VEGF-A secretion in M2c macrophages. Accordingly, there was an increase of trophoblast tube formation. Our results suggest that a low-mass endometrial/decidual microbiome can be tolerated and while it supports implantation and further pregnancy processes.