Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,495
result(s) for
"Genes, MHC Class II"
Sort by:
Common genetic susceptibility loci link PFAPA syndrome, Behçet’s disease, and recurrent aphthous stomatitis
2020
Periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome is the most common periodic fever syndrome in children. The disease appears to cluster in families, but the pathogenesis is unknown. We queried two European–American cohorts and one Turkish cohort (total n = 231) of individuals with PFAPA for common variants previously associated with two other oropharyngeal ulcerative disorders, Behçet’s disease and recurrent aphthous stomatitis. In a metaanalysis, we found that a variant upstream of IL12A (rs17753641) is strongly associated with PFAPA (OR 2.13, P = 6 × 10−9). We demonstrated that monocytes from individuals who are heterozygous or homozygous for this risk allele produce significantly higher levels of IL-12p70 upon IFN-γ and LPS stimulation than those from individuals without the risk allele. We also found that variants near STAT4, IL10, and CCR1-CCR3 were significant susceptibility loci for PFAPA, suggesting that the pathogenesis of PFAPA involves abnormal antigen-presenting cell function and T cell activity and polarization, thereby implicating both innate and adaptive immune responses at the oropharyngeal mucosa. Our results illustrate genetic similarities among recurrent aphthous stomatitis, PFAPA, and Behçet’s disease, placing these disorders on a common spectrum, with recurrent aphthous stomatitis on the mild end, Behçet’s disease on the severe end, and PFAPA intermediate. We propose naming these disorders Behçet’s spectrum disorders to highlight their relationship. HLA alleles may be factors that influence phenotypes along this spectrum as we found new class I and II HLA associations for PFAPA distinct from Behçet’s disease and recurrent aphthous stomatitis.
Journal Article
Trogocytosis of peptide–MHC class II complexes from dendritic cells confers antigen-presenting ability on basophils
by
Miyake, Kensuke
,
Yoshikawa, Soichiro
,
Shiozawa, Nozomu
in
Amino Acid Sequence
,
Animals
,
Antigen Presentation - immunology
2017
Th2 immunity plays important roles in both protective and allergic responses. Nevertheless, the nature of antigen-presenting cells responsible for Th2 cell differentiation remains ill-defined compared with the nature of the cells responsible for Th1 and Th17 cell differentiation. Basophils have attracted attention as a producer of Th2-inducing cytokine IL-4, whereas their MHC class II (MHC-II) expression and function as antigen-presenting cells are matters of considerable controversy. Here we revisited the MHC-II expression on basophils and explored its functional relevance in Th2 cell differentiation. Basophils generated in vitro from bone marrow cells in culture with IL-3 plus GM-CSF displayed MHC-II on the cell surface, whereas those generated in culture with IL-3 alone did not. Of note, these MHC-II–expressing basophils showed little or no transcription of the corresponding MHC-II gene. The GM-CSF addition to culture expanded dendritic cells (DCs) other than basophils. Coculture of basophils and DCs revealed that basophils acquired peptide–MHC-II complexes from DCs via cell contact-dependent trogocytosis. The acquired complexes, together with CD86, enabled basophils to stimulate peptide-specific T cells, leading to their proliferation and IL-4 production, indicating that basophils can function as antigen-presenting cells for Th2 cell differentiation. Transfer of MHC-II from DCs to basophils was also detected in draining lymph nodes of mice with atopic dermatitis-like skin inflammation. Thus, the present study defined the mechanism by which basophils display MHC-II on the cell surface and appears to reconcile some discrepancies observed in previous studies.
Journal Article
Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation
2015
Autoimmunity and macrophage recruitment into the central nervous system (CNS) are critical determinants of neuroinflammatory diseases. However, the mechanisms that drive immunological responses targeted to the CNS remain largely unknown. Here we show that fibrinogen, a central blood coagulation protein deposited in the CNS after blood–brain barrier disruption, induces encephalitogenic adaptive immune responses and peripheral macrophage recruitment into the CNS leading to demyelination. Fibrinogen stimulates a unique transcriptional signature in CD11b
+
antigen-presenting cells inducing the recruitment and local CNS activation of myelin antigen-specific Th1 cells. Fibrinogen depletion reduces Th1 cells in the multiple sclerosis model, experimental autoimmune encephalomyelitis. Major histocompatibility complex (MHC) II-dependent antigen presentation, CXCL10- and CCL2-mediated recruitment of T cells and macrophages, respectively, are required for fibrinogen-induced encephalomyelitis. Inhibition of the fibrinogen receptor CD11b/CD18 protects from all immune and neuropathologic effects. Our results show that the final product of the coagulation cascade is a key determinant of CNS autoimmunity.
Autoimmune brain inflammation is associated with activation of macrophages and microglia. Here the authors show that fibrinogen induces encephalitogenic T-cell activation and macrophage recruitment to the central nervous system, and promotes demyelination in a mouse model of multiple sclerosis.
Journal Article
Comprehensive analysis of medaka major histocompatibility complex (MHC) class II genes: Implications for evolution in teleosts
by
Hidemi P. Bannai
,
Masaru Nonaka
in
Adaptive Immunity
,
Adaptive Immunity - genetics
,
Allergology
2013
The major histocompatibility complex (MHC) class II molecules play central roles in adaptive immunity by regulating immune response via the activation of CD4 T cells. The full complement of the MHC class II genes has been elucidated only in mammalian species to date. To understand the evolution of these genes, we performed their first comprehensive analysis in nonmammalian species using a teleost, medaka (
Oryzias latipes
). Based on a database search, cDNA cloning, and genomic PCR, medaka was shown to possess five pairs of expressed class II genes, comprising one IIA and one IIB gene. Each pair was located on a different chromosome and was not linked to the class I genes. Only one pair showed a high degree of polymorphism and was considered to be classical class II genes, whereas the other four pairs were nonclassical. Phylogenetic analysis of all medaka class II genes and most reported teleost class II genes revealed that the IIA and IIB genes formed separate clades, each containing three well-corresponding lineages. One lineage contained three medaka genes and all known classical class II genes of Ostariophysi and Euteleostei and was presumed to be an original lineage of the teleost MHC class II genes. The other two lineages contained one nonclassical medaka gene each and some Euteleostei genes. These results indicate that multiple lineages of the teleost MHC class II genes have been conserved for hundreds of millions of years and that the tightly linked IIA and IIB genes have undergone concerted evolution.
Journal Article
Fraction of MHCII and EpCAM expression characterizes distal lung epithelial cells for alveolar type 2 cell isolation
by
Tanimura, Kazuya
,
Hasegawa, Koichi
,
Uemasu, Kiyoshi
in
Alveolar Epithelial Cells - classification
,
Alveolar Epithelial Cells - metabolism
,
Alveolar type 2 cell
2017
Backgound
Alveolar type 2 (AT2) cells play important roles in maintaining adult lung homeostasis. AT2 cells isolated from the lung have revealed the cell-specific functions of AT2 cells. Comprehensive molecular and transcriptional profiling of purified AT2 cells would be helpful for elucidating the underlying mechanisms of their cell-specific functions. To enable the further purification of AT2 cells, we aimed to discriminate AT2 cells from non-AT2 lung epithelial cells based on surface antigen expression via fluorescence activated cell sorting (FACS).
Methods
Single-cell suspensions obtained from enzymatically digested murine lungs were labeled for surface antigens (CD45/CD31/epithelial cell adhesion molecule (EpCAM)/ major histocompatibility complex class II (MHCII)) and for pro-surfactant protein C (proSP-C), followed by FACS analysis for surface antigen expression on AT2 cells. AT2 cells were sorted, and purity was evaluated by immunofluorescence and FACS. This newly developed strategy for AT2 cell isolation was validated in different strains and ages of mice, as well as in a lung injury model.
Results
FACS analysis revealed that EpCAM
+
epithelial cells existed in 3 subpopulations based on EpCAM and MHCII expression: EpCAM
med
MHCII
+
cells (Population1:P1), EpCAM
hi
MHCII
−
cells (P2), and EpCAM
low
MHCII
−
cells (P3). proSP-C
+
cells were enriched in P1 cells, and the purity values of the sorted AT2 cells in P1 were 99.0% by immunofluorescence analysis and 98.0% by FACS analysis. P2 cells were mainly composed of ciliated cells and P3 cells were composed of AT1 cells, respectively, based on the gene expression analysis and immunofluorescence. EpCAM and MHCII expression levels were not significantly altered in different strains or ages of mice or following lipopolysaccharide (LPS)-induced lung injury.
Conclusions
We successfully classified murine distal lung epithelial cells based on EpCAM and MHCII expression. The discrimination of AT2 cells from non-AT2 epithelial cells resulted in the isolation of pure AT2 cells. Highly pure AT2 cells will provide accurate and deeper insights into the cell-specific mechanisms of alveolar homeostasis.
Journal Article
Early-onset autoimmune vitiligo associated with an enhancer variant haplotype that upregulates class II HLA expression
2019
Vitiligo is an autoimmune disease in which melanocyte destruction causes skin depigmentation, with 49 loci known from previous GWAS. Aiming to define vitiligo subtypes, we discovered that age-of-onset is bimodal; one-third of cases have early onset (mean 10.3 years) and two-thirds later onset (mean 34.0 years). In the early-onset subgroup we found novel association with MHC class II region indel rs145954018, and independent association with the principal MHC class II locus from previous GWAS, represented by rs9271597; greatest association was with rs145954018del-rs9271597A haplotype (
P
= 2.40 × 10
−86
, OR = 8.10). Both rs145954018 and rs9271597 are located within lymphoid-specific enhancers, and the rs145954018del-rs9271597A haplotype is specifically associated with increased expression of
HLA-DQB1
mRNA and HLA-DQ protein by monocytes and dendritic cells. Thus, for vitiligo, MHC regulatory variation confers extreme risk, more important than
HLA
coding variation. MHC regulatory variation may represent a significant component of genetic risk for other autoimmune diseases.
GWAS have led to the identification of 49 genetic loci associated with vitiligo. Here, the authors observe a bimodal distribution of age-of-onset and find a novel genetic locus specifically associated with early-onset vitiligo, located in a regulatory element in the MHC class II region.
Journal Article
The pleiotropic role of autophagy: from protein metabolism to bactericide
2005
Autophagy is in principle a nonselective, bulk degradation system within cells, with a contribution to intracellular protein degradation estimated to be as large as that of the ubiquitin–-proteasome system. The primary roles of autophagy are baseline turnover of intracellular proteins and organelles, production of amino acids in nutrient emergency, and regression of retired tissues. These functions guarantee rejuvenation and adaptation to adverse conditions, and even underlie dynamic processes such as development/metamorphosis. In addition, several other roles for autophagy have recently been discovered, such as presentation of endogenous antigens and degradation of invasive bacteria. This review will discuss the biological significance of autophagy from yeast to higher eukaryotes.
Journal Article
Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson's disease brains
2003
There are numerous observations confirming that microglia expressing major histocompatibility complex (MHC) class II molecules are associated with the central nervous system (CNS) in aging and pathological conditions. In this study, we investigated the distribution of MHC class II-positive microglia in Parkinson's disease (PD) brains. The number of MHC class II-positive microglia in the substantia nigra (SN) and putamen increased as the neuronal degeneration of the SN proceeded. These cells were also ICAM-1 (CD54) and LFA-1 (CD11a) positive. The number of activated microglia not only in the SN and putamen but also in the hippocampus, transentorhinal cortex, cingulate cortex and temporal cortex in PD was significantly higher than that in the normal control. Most activated microglia persisted regardless of the presence or absence of Lewy bodies. They were frequently associated not only with alpha-synuclein-positive Lewy neurites, but also with TH-16-positive dopaminergic and WH-3-positive serotonergic neurites, as well as MAP-2- and SMI-32-positive neurites. These activated microglia were also positive for TNF-alpha and interleukin-6, which are known to have a neuroprotective function. We conclude that MHC class II-positive microglia are a sensitive index of neuropathological change and are actively associated with damaged neurons and neurites.
Journal Article
Molecular Basis for Global Incidence of Pemphigoid Diseases and Differences in Phenotypes
2022
Pemphigoid (Pg) diseases are a group of potentially fatal autoimmune mucocutaneous diseases. They have different clinical phenotypes, involving only the skin or multiple mucous membranes. They occur globally and frequently affect the elderly. The common marker among all variants is the presence of autoantibodies targeting the dermal-epidermal or mucosal-submucosal junctions, or basement membrane zone (BMZ). Four target antigens in the BMZ were studied. These included BPAG1, BPAG2 and subunits of α6 and β4 human integrins. Our objective was to find a molecular basis for the global incidence of Pg diseases and a mechanism that will explain the vast differences in clinical phenotypes and outcomes. All the variants of Pg that were analyzed had a statistically significant association with HLA-DQβ1*03:01 in ten countries on four continents. This explains the reason for global incidence. Prediction models discovered multiple peptides in each of the four antigens that serve as T cell epitopes. These T cell epitopes were shown to bind to HLA-DQβ1*03:01. In addition, structure modelling demonstrated the peptide-HLA complex bound to the T cell receptor. These autoreactive T cells would stimulate B cells to produce specific anti-BMZ autoantibodies. Anti-BMZ autoantibodies with different specificities will produce different phenotypes, which will account for involvement of different tissues and organs in different molecules. The contribution this study makes is that it provides a molecular basis of why a similar disease occurs in different racial groups. Furthermore, it provides the basis for the production of autoantibodies with different specificities, which resultantly produces different phenotypes.
Journal Article
Latitudinal diversity gradient and cetaceans from the perspective of MHC genes
2020
Pathogen diversity is a key source of selective pressure on immune system genes, shaping molecular evolution mainly on widely distributed or migratory organisms such as cetaceans. Here, we investigated the effects of latitudinal span migration, different biomes occupation, and pathogen-mediated selection on MHC DQB locus divergence on cetaceans. We applied some evolutionary genetics methods using a dataset of 15 species and 121 sequences, and we found a trend on greater MHC divergence on tropical species when compared with either temperate or migratory species. In addition, oceanic cetaceans exhibit greater MHC divergence. Here, we show that, despite there was a correlation between the diversity of MHC DQB alleles with the distribution of organisms, the pattern of diversity found is not completely explained by pathogenic pressure, suggesting that other factors must be investigated for a better understanding of the processes related to the diversity of MHC in cetaceans.
Journal Article