Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
334
result(s) for
"Hallucinations - diagnostic imaging"
Sort by:
Hallucinations Under Psychedelics and in the Schizophrenia Spectrum: An Interdisciplinary and Multiscale Comparison
by
Tehseen Noorani
,
David Dupuis
,
Yuliya Zaytseva
in
10054 Clinic for Psychiatry, Psychotherapy, and Psychosomatics
,
2.1 Biological and endogenous factors
,
2.3 Psychological
2020
Abstract
The recent renaissance of psychedelic science has reignited interest in the similarity of drug-induced experiences to those more commonly observed in psychiatric contexts such as the schizophrenia-spectrum. This report from a multidisciplinary working group of the International Consortium on Hallucinations Research (ICHR) addresses this issue, putting special emphasis on hallucinatory experiences. We review evidence collected at different scales of understanding, from pharmacology to brain-imaging, phenomenology and anthropology, highlighting similarities and differences between hallucinations under psychedelics and in the schizophrenia-spectrum disorders. Finally, we attempt to integrate these findings using computational approaches and conclude with recommendations for future research.
Journal Article
Network Localization of State and Trait of Auditory Verbal Hallucinations in Schizophrenia
2024
Abstract
Background and Hypothesis
Neuroimaging studies investigating the neural substrates of auditory verbal hallucinations (AVH) in schizophrenia have yielded mixed results, which may be reconciled by network localization. We sought to examine whether AVH-state and AVH-trait brain alterations in schizophrenia localize to common or distinct networks.
Study Design
We initially identified AVH-state and AVH-trait brain alterations in schizophrenia reported in 48 previous studies. By integrating these affected brain locations with large-scale discovery and validation resting-state functional magnetic resonance imaging datasets, we then leveraged novel functional connectivity network mapping to construct AVH-state and AVH-trait dysfunctional networks.
Study Results
The neuroanatomically heterogeneous AVH-state and AVH-trait brain alterations in schizophrenia localized to distinct and specific networks. The AVH-state dysfunctional network comprised a broadly distributed set of brain regions mainly involving the auditory, salience, basal ganglia, language, and sensorimotor networks. Contrastingly, the AVH-trait dysfunctional network manifested as a pattern of circumscribed brain regions principally implicating the caudate and inferior frontal gyrus. Additionally, the AVH-state dysfunctional network aligned with the neuromodulation targets for effective treatment of AVH, indicating possible clinical relevance.
Conclusions
Apart from unifying the seemingly irreproducible neuroimaging results across prior AVH studies, our findings suggest different neural mechanisms underlying AVH state and trait in schizophrenia from a network perspective and more broadly may inform future neuromodulation treatment for AVH.
Journal Article
Correlation Between Cortical Thickness Abnormalities of the Olfactory Sulcus and Olfactory Identification Disorder and Persistent Auditory Verbal Hallucinations in Chinese Patients With Chronic Schizophrenia
2024
Abstract
Background and Hypothesis
Persistent auditory verbal hallucinations (pAVHs) and olfactory identification impairment are common in schizophrenia (SCZ), but the neuroimaging mechanisms underlying both pAVHs and olfactory identification impairment are unclear. This study aimed to investigate whether pAVHs and olfactory identification impairment in SCZ patients are associated with changes in cortical thickness.
Study Design
In this study, cortical thickness was investigated in 78 SCZ patients with pAVHs (pAVH group), 58 SCZ patients without AVHs (non-AVH group), and 83 healthy controls (HC group) using 3T magnetic resonance imaging. The severity of pAVHs was assessed by the Auditory Hallucination Rating Scale. Olfactory identification deficits were assessed using the Odor Stick Identification Test for Japanese (OSIT-J). In addition, the relationship between the severity of pAVHs and olfactory identification disorder and cortical thickness abnormalities was determined.
Study Results
Significant reductions in cortical thickness were observed in the right medial orbital sulcus (olfactory sulcus) and right orbital sulcus (H-shaped sulcus) in the pAVH group compared to both the non-AVH and HC groups (P < .003, Bonferroni correction). Furthermore, the severity of pAVHs was found to be negatively correlated with the reduction in cortical thickness in the olfactory sulcus and H-shaped sulcus. Additionally, a decrease in cortical thickness in the olfactory sulcus showed a positive correlation with the OSIT-J scores (P < .05, false discovery rate correction).
Conclusions
Cortical thickness abnormalities in the olfactory sulcus may be a common neuroimaging mechanism for pAVHs and olfactory identification deficits in SCZ patients.
Journal Article
Auditory Verbal Hallucinations in Schizophrenia From a Levels of Explanation Perspective
by
Sommer, Iris E
,
Hugdahl, Kenneth
in
Hallucinations
,
Hallucinations - diagnostic imaging
,
Hallucinations - genetics
2018
In the present article, we present a \"Levels of Explanation\" (LoE) approach to auditory verbal hallucinations (AVHs) in schizophrenia. Mental phenomena can be understood at different levels of explanation, including cultural, clinical, cognitive, brain imaging, cellular, and molecular levels. Current research on AVHs is characterized by accumulation of data at all levels, but with little or no interaction of findings between levels. A second advantage with a Levels of Explanation approach is that it fosters interdisciplinarity and collaboration across traditional borders, facilitating a real breakthrough in future research. We exemplify a Levels of Explanation approach with data from 3 levels where findings at 1 level provide predictions for another level. More specifically, we show how functional neuroimaging data at the brain level correspond with behavioral data at the cognitive level, and how data at these 2 levels correspond with recent findings of changes in neurotransmitter function at the cellular level. We further discuss implications for new therapeutic interventions, and the article is ended by suggestion how future research could incorporate genetic influences on AVHs at the molecular level of explanation by providing examples for animal work.
Journal Article
Progressive gray matter reduction in schizophrenia patients with persistent auditory hallucinations by causal structural covariance network analysis
2025
Schizophrenia patients with auditory hallucinations have distinct morphological abnormalities, but whether this population have a progressive gray matter atrophy pattern and specific transmission chain of causal effects remains unclear. This study was designed to construct a causal structural covariance network in schizophrenia patients with persistent auditory hallucinations.
T1-weighted MRI images were acquired from 90 schizophrenia patients with persistent auditory hallucinations (pAH group) and 83 healthy controls (HC group). Stage-specific independent
tests of gray matter volume (GMV) comparisons between the two groups were used to depict the GMV atrophic pattern and locate the atrophic origin. In the pAH group, the causal structural covariance network (CaSCN) was constructed to map causal effects between the atrophic origin and other regions as the auditory hallucination severity increased.
With the ascending of hallucinatory severity, GMV reductions began from the thalamus, bilateral medial frontal gyri, left Rolandic operculum, and left calcarine, and expanded to other frontal and temporal regions, hippocampal complex, insula, anterior cingulate gyri, fusiform, and cerebellum. Using the peak region (thalamus) as the causal origin in the network, transitional nodes including the right opercular part of the inferior frontal gyrus, bilateral postcentral gyri, left thalamus, and right middle frontal gyrus received the casual information and projected to target nodes from the frontal, temporal, parietal, and occipital cortices, limbic system, and cerebellum.
Our study revealed causal effects from the thalamus and a specific transmission pattern of causal information within the network, indicating a thalamic-cortical-cerebellar circuitry dysfunction related to auditory hallucinations.
Journal Article
Linked 4-Way Multimodal Brain Differences in Schizophrenia in a Large Chinese Han Population
by
Xu, Kaibin
,
Jiang, Tianzi
,
Song, Ming
in
Adult
,
Basal Ganglia - diagnostic imaging
,
Basal Ganglia - pathology
2019
Abstract
Multimodal fusion has been regarded as a promising tool to discover covarying patterns of multiple imaging types impaired in brain diseases, such as schizophrenia (SZ). In this article, we aim to investigate the covarying abnormalities underlying SZ in a large Chinese Han population (307 SZs, 298 healthy controls [HCs]). Four types of magnetic resonance imaging (MRI) features, including regional homogeneity (ReHo) from resting-state functional MRI, gray matter volume (GM) from structural MRI, fractional anisotropy (FA) from diffusion MRI, and functional network connectivity (FNC) resulted from group independent component analysis, were jointly analyzed by a data-driven multivariate fusion method. Results suggest that a widely distributed network disruption appears in SZ patients, with synchronous changes in both functional and structural regions, especially the basal ganglia network, salience network (SAN), and the frontoparietal network. Such a multimodal coalteration was also replicated in another independent Chinese sample (40 SZs, 66 HCs). Our results on auditory verbal hallucination (AVH) also provide evidence for the hypothesis that prefrontal hypoactivation and temporal hyperactivation in SZ may lead to failure of executive control and inhibition, which is relevant to AVH. In addition, impaired working memory performance was found associated with GM reduction and FA decrease in SZ in prefrontal and superior temporal area, in both discovery and replication datasets. In summary, by leveraging multiple imaging and clinical information into one framework to observe brain in multiple views, we can integrate multiple inferences about SZ from large-scale population and offer unique perspectives regarding the missing links between the brain function and structure that may not be achieved by separate unimodal analyses.
Journal Article
Aberrant Cerebello-Thalamo-Cortical Functional and Effective Connectivity in First-Episode Schizophrenia With Auditory Verbal Hallucinations
by
Yang, Meng
,
Wang, Huan
,
Chen, Jingli
in
Cerebellum - diagnostic imaging
,
Cerebral Cortex - diagnostic imaging
,
Hallucinations
2022
Abstract
The thalamus is known to be impaired in schizophrenia patients with auditory verbal hallucinations (AVHs). Abnormal filtering function of the thalamus has been found in schizophrenia patients with AVHs. However, a whole-structure approach has commonly been adopted when investigating thalamic dysconnectivity in patients with AVHs, and it remains unclear which thalamic nucleus is the critical structure underlying AVHs. Here, we investigated voxel-wise resting-state functional connectivity (rsFC) of the thalamic nucleus in drug-naïve patients with first-episode schizophrenia (FES) with AVHs. In addition, dynamic causal modeling was applied to compute effective connectivity and estimate causal relationships that could explain aberrant rsFC. Compared with the FES patients without AVH (NAVH) and normal controls, patients with AVHs had weaker rsFC of the bilateral medial pulvinar (PuM) nucleus-cerebellum. Moreover, compared with the normal control group, the AVH and NAVH groups had significantly stronger rsFC of the bilateral PuM nucleus-cerebral cortex, as well as weaker rsFC of the right medial geniculate nucleus-cerebral cortex. Compared with the NAVH and normal control groups, dynamic causal modeling revealed significantly stronger effective connectivity from the left PuM nucleus to the right inferior frontal gyrus in the AVH group. These findings indicate that the critical structure in the thalamus underlying AVHs is the PuM nucleus, and provide direct evidence that the cerebello-thalamo-cortical circuit is associated with AVHs.
Journal Article
Intra-Regional Glu-GABA vs Inter-Regional Glu-Glu Imbalance: A 1H-MRS Study of the Neurochemistry of Auditory Verbal Hallucinations in Schizophrenia
by
Bless, Josef J
,
Løberg, Else-Marie
,
Hugdahl, Kenneth
in
Adult
,
Brain
,
gamma-Aminobutyric Acid - metabolism
2020
Glutamate (Glu), gamma amino-butyric acid (GABA), and excitatory/inhibitory (E/I) imbalance have inconsistently been implicated in the etiology of schizophrenia. Elevated Glu levels in language regions have been suggested to mediate auditory verbal hallucinations (AVH), the same regions previously associated with neuronal hyperactivity during AVHs. It is, however, not known whether alterations in Glu levels are accompanied by corresponding GABA alterations, nor is it known if Glu levels are affected in brain regions with known neuronal hypo-activity. Using magnetic resonance spectroscopy (MRS), we measured Glx (Glu+glutamine) and GABA+ levels in the anterior cingulate cortex (ACC), left and right superior temporal gyrus (STG), and left inferior frontal gyrus (IFG), in a sample of 77 schizophrenia patients and 77 healthy controls. Two MRS-protocols were used. Results showed a marginally significant positive correlation in the left STG between Glx and AVHs, whereas a significant negative correlation was found in the ACC. In addition, high-hallucinating patients as a group showed decreased ACC and increased left STG Glx levels compared to low-hallucinating patients, with the healthy controls in between the 2 hallucinating groups. No significant differences were found for GABA+ levels. It is discussed that reduced ACC Glx levels reflect an inability of AVH patients to cognitively inhibit their “voices” through neuronal hypo-activity, which in turn originates from increased left STG Glu levels and neuronal hyperactivity. A revised E/I-imbalance model is proposed where Glu-Glu imbalance between brain regions is emphasized rather than Glu-GABA imbalance within regions, for the understanding of the underlying neurochemistry of AVHs.
Journal Article
Fronto-Temporal Disconnection Within the Presence Hallucination Network in Psychotic Patients With Passivity Experiences
by
Salomon, Roy
,
Potheegadoo, Jevita
,
Progin, Pierre
in
Adult
,
Brain
,
Cerebral Cortex - diagnostic imaging
2021
Abstract
Psychosis, characterized by hallucinations and delusions, is a common feature of psychiatric disease, especially schizophrenia. One prominent theory posits that psychosis is driven by abnormal sensorimotor predictions leading to the misattribution of self-related events. This misattribution has been linked to passivity experiences (PE), such as loss of agency and, more recently, to presence hallucinations (PH), defined as the conscious experience of the presence of an alien agent while no person is actually present. PH has been observed in schizophrenia, Parkinson’s disease, and neurological patients with brain lesions and, recently, the brain mechanisms of PH (PH-network) have been determined comprising bilateral posterior middle temporal gyrus (pMTG), inferior frontal gyrus (IFG), and ventral premotor cortex (vPMC). Given that the experience of an alien agent is a common feature of PE, we here analyzed the functional connectivity within the PH-network in psychotic patients with (N = 39) vs without PE (N = 26). We observed reduced fronto-temporal functional connectivity in patients with PE compared to patients without PE between the right pMTG and the right and left IFG of the PH-network. Moreover, when seeding from these altered regions, we observed specific alterations with brain regions commonly linked to auditory-verbal hallucinations (such as Heschl’s gyrus). The present connectivity findings within the PH-network extend the disconnection hypothesis for hallucinations to the specific case of PH and associates the PH-network with key brain regions for frequent psychotic symptoms such as auditory-verbal hallucinations, showing that PH are relevant to the study of the brain mechanisms of psychosis and PE.
Journal Article
Exploring the relationship between hallucination proneness and brain morphology
by
Alsharif, Roaa A.
,
Alosaimi, Manal H.
,
Meyer, Georg F.
in
Adolescent
,
Adult
,
Brain - diagnostic imaging
2024
•Hallucinations, including both auditory and visual types, are often associated with alterations in brain structure, particularly in language-related areas.•Significant positive correlations were found between hallucination scores and brain volume in regions previously linked to volume reductions in patients with hallucinations.•Participants with high hallucination proneness for both auditory and visual experiences exhibited higher brain volumes in language areas compared to those experiencing hallucinations rarely or never.•These findings challenge existing models and suggest a need for further research into the complex relationship between brain structure and auditory and visual hallucination experiences.•The results suggest that higher brain volumes in language areas may contribute to hallucination susceptibility in healthy individuals, contrasting the volume reductions seen in patients.
Hallucinations, including both auditory and visual forms, are often associated with alterations in brain structure, particularly in specific language-related cortical areas. Existing models propose different frameworks for understanding the relationship between brain volume and hallucination proneness, but practical evidence supporting these models is limited.
This study investigated the relationship between hallucination proneness and brain volume in language-related cortical regions, specifically the superior temporal gyrus and Broca's area. A total of 68 participants, primarily university students, completed the Launay-Slade Hallucination Scale (LSHS) to assess hallucination proneness for both auditory and visual experiences. Structural MRI scans were used to measure brain volume in the targeted regions.
The results indicated significant positive correlations between LSHS scores and brain volume in the superior temporal gyrus and Broca's area regions previously linked to volume reductions in patients with clinically diagnosed hallucinations. Participants reporting high hallucination proneness for both auditory and visual hallucinations exhibited higher brain volumes in these language areas compared to those experiencing hallucinations rarely or never.
These findings challenge existing models by suggesting that higher brain volumes in language-related cortical areas may be associated with increased proneness to both auditory and visual hallucinations in non-clinical populations. This contrasts with the volume reductions seen in patients with clinical hallucinations and highlights the need for further research into the complex interplay between brain structure and hallucinatory experiences.
Journal Article