Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
167,477
result(s) for
"Healing"
Sort by:
Foundations of Reiki Ryهohهo : a manual of shoden and okuden
\"A comprehensive guide to the first and second degrees of Usui Reiki Ryoho as well as Reiki's history and Western evolution\"-- Provided by publisher.
Self-Healing Concrete as a Prospective Construction Material: A Review
by
Vatin, Nikolai Ivanovicn
,
Fediuk, Roman
,
Muhammad Rashid, Raizal Saifulnaz
in
Bacteria
,
Cement
,
Composite materials
2022
Concrete is a material that is widely used in the construction market due to its availability and cost, although it is prone to fracture formation. Therefore, there has been a surge in interest in self-healing materials, particularly self-healing capabilities in green and sustainable concrete materials, with a focus on different techniques offered by dozens of researchers worldwide in the last two decades. However, it is difficult to choose the most effective approach because each research institute employs its own test techniques to assess healing efficiency. Self-healing concrete (SHC) has the capacity to heal and lowers the requirement to locate and repair internal damage (e.g., cracks) without the need for external intervention. This limits reinforcement corrosion and concrete deterioration, as well as lowering costs and increasing durability. Given the merits of SHCs, this article presents a thorough review on the subject, considering the strategies, influential factors, mechanisms, and efficiency of self-healing. This literature review also provides critical synopses on the properties, performance, and evaluation of the self-healing efficiency of SHC composites. In addition, we review trends of development in research toward a broad understanding of the potential application of SHC as a superior concrete candidate and a turning point for developing sustainable and durable concrete composites for modern construction today. Further, it can be imagined that SHC will enable builders to construct buildings without fear of damage or extensive maintenance. Based on this comprehensive review, it is evident that SHC is a truly interdisciplinary hotspot research topic integrating chemistry, microbiology, civil engineering, material science, etc. Furthermore, limitations and future prospects of SHC, as well as the hotspot research topics for future investigations, are also successfully highlighted.
Journal Article
Trial of Beremagene Geperpavec (B-VEC) for Dystrophic Epidermolysis Bullosa
by
Gonzalez, Franshesca
,
Krishnan, Suma
,
Agostini, Brittani
in
Administration, Topical
,
Clinical trials
,
Collagen (type I)
2022
This genetic blistering disease is the result of mutations in
COL7A1
, which encodes type VII collagen. Topical HSV-1 gene therapy delivering
COL7A1
resulted in greater wound healing at 6 months than placebo.
Journal Article
Time Course of Immune Response and Immunomodulation During Normal and Delayed Healing of Musculoskeletal Wounds
by
Muire, Preeti J.
,
Mangum, Lauren H.
,
Wenke, Joseph C.
in
Animals
,
Bone healing
,
Bone Regeneration - immunology
2020
Single trauma injuries or isolated fractures are often manageable and generally heal without complications. In contrast, high-energy trauma results in multi/poly-trauma injury patterns presenting imbalanced pro- and anti- inflammatory responses often leading to immune dysfunction. These injuries often exhibit delayed healing, leading to fibrosis of injury sites and delayed healing of fractures depending on the intensity of the compounding traumas. Immune dysfunction is accompanied by a temporal shift in the innate and adaptive immune cells distribution, triggered by the overwhelming release of an arsenal of inflammatory mediators such as complements, cytokines and damage associated molecular patterns (DAMPs) from necrotic cells. Recent studies have implicated this dysregulated inflammation in the poor prognosis of polytraumatic injuries, however, interventions focusing on immunomodulating inflammatory cellular composition and activation, if administered incorrectly, can result in immune suppression and unintended outcomes. Immunomodulation therapy is promising but should be conducted with consideration for the spatial and temporal distribution of the immune cells during impaired healing. This review describes the current state of knowledge in the spatiotemporal distribution patterns of immune cells at various stages during musculoskeletal wound healing, with a focus on recent advances in the field of Osteoimmunology, a study of the interface between the immune and skeletal systems, in long bone fractures. The goals of this review are to (1) discuss wound and fracture healing processes of normal and delayed healing in skeletal muscles and long bones; (2) provide a balanced perspective on temporal distributions of immune cells and skeletal cells during healing; and (3) highlight recent therapeutic interventions used to improve fracture healing. This review is intended to promote an understanding of the importance of inflammation during normal and delayed wound and fracture healing. Knowledge gained will be instrumental in developing novel immunomodulatory approaches for impaired healing.
Journal Article
First, we make the beast beautiful : a new journey through anxiety
Challenges cultural beliefs about anxiety from the perspectives of medical and spiritual leaders to explore how the condition needs to be viewed less as a burdensome affliction and more as a source of divine growth.
Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats
2016
A novel stainless-steel pin has been engineered with a pure magnesium core that promotes improved fracture healing in rats by inducing local production of a key neuropeptide for osteogenesis.
Orthopedic implants containing biodegradable magnesium have been used for fracture repair with considerable efficacy; however, the underlying mechanisms by which these implants improve fracture healing remain elusive. Here we show the formation of abundant new bone at peripheral cortical sites after intramedullary implantation of a pin containing ultrapure magnesium into the intact distal femur in rats. This response was accompanied by substantial increases of neuronal calcitonin gene-related polypeptide-α (CGRP) in both the peripheral cortex of the femur and the ipsilateral dorsal root ganglia (DRG). Surgical removal of the periosteum, capsaicin denervation of sensory nerves or knockdown
in vivo
of the CGRP-receptor-encoding genes
Calcrl
or
Ramp1
substantially reversed the magnesium-induced osteogenesis that we observed in this model. Overexpression of these genes, however, enhanced magnesium-induced osteogenesis. We further found that an elevation of extracellular magnesium induces magnesium transporter 1 (MAGT1)-dependent and transient receptor potential cation channel, subfamily M, member 7 (TRPM7)-dependent magnesium entry, as well as an increase in intracellular adenosine triphosphate (ATP) and the accumulation of terminal synaptic vesicles in isolated rat DRG neurons. In isolated rat periosteum-derived stem cells, CGRP induces CALCRL- and RAMP1-dependent activation of cAMP-responsive element binding protein 1 (CREB1) and SP7 (also known as osterix), and thus enhances osteogenic differentiation of these stem cells. Furthermore, we have developed an innovative, magnesium-containing intramedullary nail that facilitates femur fracture repair in rats with ovariectomy-induced osteoporosis. Taken together, these findings reveal a previously undefined role of magnesium in promoting CGRP-mediated osteogenic differentiation, which suggests the therapeutic potential of this ion in orthopedics.
Journal Article
The brain's way of healing : remarkable discoveries and recoveries from the frontiers of neuroplasticity
\" The New York Times bestselling author of The Brain That Changes Itself presents astounding advances in the treatment of brain injury and illness. In The Brain That Changes Itself, Norman Doidge described the most important breakthrough in our understanding of the brain in four hundred years: the discovery that the brain can change its own structure and function in response to mental experience-what we call neuroplasticity. His revolutionary new book shows, for the first time, how the amazing process of neuroplastic healing really works. It describes natural, non-invasive avenues into the brain provided by the forms of energy around us-light, sound, vibration, movement-which pass through our senses and our bodies to awaken the brain's own healing capacities without producing unpleasant side effects. Doidge explores cases where patients alleviated years of chronic pain or recovered from debilitating strokes or accidents; children on the autistic spectrum or with learning disorders normalizing; symptoms of multiple sclerosis, Parkinson's disease, and cerebral palsy radically improved, and other near-miracle recoveries. And we learn how to vastly reduce the risk of dementia with simple approaches anyone can use. For centuries it was believed that the brain's complexity prevented recovery from damage or disease. The Brain's Way of Healing shows that this very sophistication is the source of a unique kind of healing. As he did so lucidly in The Brain That Changes Itself, Doidge uses stories to present cutting-edge science with practical real-world applications, and principles that everyone can apply to improve their brain's performance and health\"-- Provided by publisher.