Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
788
result(s) for
"Hedgehog pathway"
Sort by:
The Hedgehog pathway as targetable vulnerability with 5-azacytidine in myelodysplastic syndrome and acute myeloid leukemia
2015
Background
Therapy and outcome for elderly acute myeloid leukemia (AML) patients has not improved for many years. Similarly, there remains a clinical need to improve response rates in advanced myelodysplastic syndrome (MDS) patients treated with hypomethylating agents, and few combination regimens have shown clinical benefit. We conducted a 5-azacytidine (5-Aza) RNA-interference (RNAi) sensitizer screen to identify gene targets within the commonly deleted regions (CDRs) of chromosomes 5 and 7, whose silencing enhances the activity of 5-Aza.
Methods and results
An RNAi silencing screen of 270 genes from the CDRs of chromosomes 5 and 7 was performed in combination with 5-Aza treatment in four AML cell lines (TF-1, THP-1, MDS-L, and HEL). Several genes within the hedgehog pathway (HhP), specifically
SHH
,
SMO
, and
GLI3
, were identified as 5-Aza sensitizing hits. The smoothened (SMO) inhibitors LDE225 (erismodegib) and GDC0449 (vismodegib) showed moderate single-agent activity in AML cell lines. Further studies with erismodegib in combination with 5-Aza demonstrated synergistic activity with combination index (CI) values of 0.48 to 0.71 in seven AML lines. Clonogenic growth of primary patient samples was inhibited to a greater extent in the combination than with single-agent erismodegib or 5-Aza in 55 % (6 of 11) primary patient samples examined. There was no association of the 5-Aza/erismodegib sensitization potential to clinical-cytogenetic features or common myeloid mutations. Activation of the HhP, as determined by greater expression of HhP-related genes, showed less responsiveness to single-agent SMO inhibition, while synergy between both agents was similar regardless of HhP gene expression. In vitro experiments suggested that concurrent dosing showed stronger synergy than sequential dosing.
Conclusions
Inhibition of the HhP with SMO inhibitors in combination with the hypomethylating agent 5-Aza demonstrates synergy in vitro and inhibits long-term repopulation capacity ex vivo in AML and MDS. A clinical trial combining 5-Aza with LDE225 (erismodegib) in MDS and AML is ongoing based on these results as well as additional publications suggesting a role for HhP signaling in myeloid disease.
Journal Article
MicroRNA changes of bone marrow-derived mesenchymal stem cells differentiated into neuronal-like cells by Schwann cell-conditioned medium
2019
Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and identified differentially expressed microRNAs in bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium, and explored targets and related pathways involved in their differentiation into neuronal-like cells. Primary bone marrow-derived mesenchymal stem cells were isolated from femoral and tibial bones, while primary Schwann cells were isolated from bilateral saphenous nerves. Bone marrow-derived mesenchymal stem cells were cultured in unconditioned (control group) and Schwann cell-conditioned medium (bone marrow-derived mesenchymal stem cell + Schwann cell group). Neuronal differentiation of bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium was observed by time-lapse imaging. Upon induction, the morphology of bone marrow-derived mesenchymal stem cells changed into a neural shape with neurites. Results of quantitative reverse transcription-polymerase chain reaction revealed that nestin mRNA expression was upregulated from 1 to 3 days and downregulated from 3 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. Compared with the control group, microtubule-associated protein 2 mRNA expression gradually increased from 1 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. After 7 days of induction, microRNA analysis identified 83 significantly differentially expressed microRNAs between the two groups. Gene Ontology analysis indicated enrichment of microRNA target genes for neuronal projection development, regulation of axonogenesis, and positive regulation of cell proliferation. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that Hippo, Wnt, transforming growth factor-beta, and Hedgehog signaling pathways were potentially associated with neural differentiation of bone marrow-derived mesenchymal stem cells. This study, which carried out successful microRNA analysis of neuronal-like cells differentiated from bone marrow-derived mesenchymal stem cells by Schwann cell induction, revealed key microRNAs and pathways involved in neural differentiation of bone marrow-derived mesenchymal stem cells. All protocols were approved by the Animal Ethics Committee of Institute of Radiation Medicine, Chinese Academy of Medical Sciences on March 12, 2017 (approval number: DWLI-20170311).
Journal Article
The Injury-Related Activation of Hedgehog Signaling Pathway Modulates the Repair-Associated Inflammation in Liver Fibrosis
2017
Liver fibrosis is a wound healing response initiated by inflammation responding for different iterative parenchymal damages caused by diverse etiologies. Immune cells, which exert their ability of either inducing injury or promoting repair, have been regarded as crucial participants in the fibrogenic response. A characteristic feature of the fibrotic microenvironment associated with chronic liver injury is aberrant activation of hedgehog (Hh) signaling pathway. Growing evidence from a number of different studies
and
has indicated that immune-mediated events involved in liver fibrogenesis are regulated by Hh signaling pathway. In this review, we emphasize the impacts of injury-activated Hh signaling on liver fibrogenesis through modulating repair-related inflammation and focus on the regulatory action of aberrant Hh signaling on repair-related inflammatory responses mediated by hepatic classical and non-classical immune cell populations in the progression of liver fibrosis. Moreover, we also assess the potentiality of Hh pathway inhibitors as good candidates for anti-fibrotic therapeutic agents because of their immune regulation actions for fibrogenic liver repair. The identification of immune-modulatory mechanisms of Hh signaling pathway underlying the fibrotic process of chronic liver diseases might provide a basis for Hh-centered therapeutic strategies for liver fibrosis.
Journal Article
Basal Cell Carcinoma: A Comprehensive Review
by
Scarfì, Federica
,
Riefolo, Mattia
,
Marcelli, Emanuela
in
Anilides - therapeutic use
,
Arsenic
,
Biphenyl Compounds - therapeutic use
2020
Basal cell carcinoma (BCC) is the most common type of carcinoma worldwide. BCC development is the result of a complex interaction between environmental, phenotypic and genetic factors. However, despite the progress in the field, BCC biology and mechanisms of resistance against systemic treatments have been poorly investigated. The aim of the present review is to provide a revision of BCC histological and molecular features, including microRNA (miRNA) dysregulation, with a specific focus on the molecular basis of BCC systemic therapies. Papers from the last ten years regarding BCC genetic and phenotypic alterations, as well as the mechanism of resistance against hedgehog pathway inhibitors vismodegib and sonidegib were included. The involvement of miRNAs in BCC resistance to systemic therapies is emerging as a new field of knowledge.
Journal Article
Targeting the Sonic Hedgehog Signaling Pathway: Review of Smoothened and GLI Inhibitors
2016
The sonic hedgehog (Shh) signaling pathway is a major regulator of cell differentiation, cell proliferation, and tissue polarity. Aberrant activation of the Shh pathway has been shown in a variety of human cancers, including, basal cell carcinoma, malignant gliomas, medulloblastoma, leukemias, and cancers of the breast, lung, pancreas, and prostate. Tumorigenesis, tumor progression and therapeutic response have all been shown to be impacted by the Shh signaling pathway. Downstream effectors of the Shh pathway include smoothened (SMO) and glioma-associated oncogene homolog (GLI) family of zinc finger transcription factors. Both are regarded as important targets for cancer therapeutics. While most efforts have been devoted towards pharmacologically targeting SMO, developing GLI-targeted approach has its merit because of the fact that GLI proteins can be activated by both Shh ligand-dependent and -independent mechanisms. To date, two SMO inhibitors (LDE225/Sonidegib and GDC-0449/Vismodegib) have received FDA approval for treating basal cell carcinoma while many clinical trials are being conducted to evaluate the efficacy of this exciting class of targeted therapy in a variety of cancers. In this review, we provide an overview of the biology of the Shh pathway and then detail the current landscape of the Shh-SMO-GLI pathway inhibitors including those in preclinical studies and clinical trials.
Journal Article
A highlight on Sonic hedgehog pathway
by
Carballo, Gabriela Basile
,
Spohr, Tania Cristina Leite de Sampaio e
,
de Lopes, Giselle Pinto Farias
in
Analysis
,
Antineoplastic Agents - therapeutic use
,
Biomedical and Life Sciences
2018
Hedgehog (Hh) signaling pathway plays an essential role during vertebrate embryonic development and tumorigenesis. It is already known that Sonic hedgehog (Shh) pathway is important for the evolution of radio and chemo-resistance of several types of tumors. Most of the brain tumors are resistant to chemotherapeutic drugs, consequently, they have a poor prognosis. So, a better knowledge of the Shh pathway opens an opportunity for targeted therapies against brain tumors considering a multi-factorial molecular overview. Therefore, emerging studies are being conducted in order to find new inhibitors for Shh signaling pathway, which could be safely used in clinical trials. Shh can signal through a canonical and non-canonical way, and it also has important points of interaction with other pathways during brain tumorigenesis. So, a better knowledge of Shh signaling pathway opens an avenue of possibilities for the treatment of not only for brain tumors but also for other types of cancers. In this review, we will also highlight some clinical trials that use the Shh pathway as a target for treating brain cancer.
Journal Article
Non-Melanoma Skin Cancers: Biological and Clinical Features
by
Filoni, Elisabetta
,
Porta, Camillo
,
Cazzato, Gerardo
in
Angiogenesis
,
Antibodies, Monoclonal - therapeutic use
,
Antigens, Neoplasm - genetics
2020
Non-melanoma skin cancers (NMSCs) include basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and Merkel cell carcinoma (MCC). These neoplasms are highly diverse in their clinical presentation, as well as in their biological evolution. While the deregulation of the Hedgehog pathway is commonly observed in BCC, SCC and MCC are characterized by a strikingly elevated mutational and neoantigen burden. As result of our improved understanding of the biology of non-melanoma skin cancers, innovative treatment options including inhibitors of the Hedgehog pathway and immunotherapeutic agents have been recently investigated against these malignancies, leading to their approval by regulatory authorities. Herein, we review the most relevant biological and clinical features of NMSC, focusing on innovative treatment approaches.
Journal Article
A novel protein encoded by circular SMO RNA is essential for Hedgehog signaling activation and glioblastoma tumorigenicity
by
Li, Fanying
,
Xiao, Feizhe
,
Xia, Xin
in
Angiogenesis
,
Animal Genetics and Genomics
,
Bioinformatics
2021
Background
Aberrant activation of the Hedgehog pathway drives tumorigenesis of many cancers, including glioblastoma. However, the sensitization mechanism of the G protein-coupled-like receptor smoothened (SMO), a key component of Hedgehog signaling, remains largely unknown.
Results
In this study, we describe a novel protein SMO-193a.a. that is essential for Hedgehog signaling activation in glioblastoma. Encoded by circular SMO (circ-SMO), SMO-193a.a. is required for sonic hedgehog (Shh) induced SMO activation, via interacting with SMO, enhancing SMO cholesterol modification, and releasing SMO from the inhibition of patched transmembrane receptors. Deprivation of SMO-193a.a. in brain cancer stem cells attenuates Hedgehog signaling intensity and suppresses self-renewal, proliferation in vitro, and tumorigenicity in vivo. Moreover, circ-SMO/SMO-193a.a. is positively regulated by FUS, a direct transcriptional target of Gli1. Shh/Gli1/FUS/SMO-193a.a. form a positive feedback loop to sustain Hedgehog signaling activation in glioblastoma. Clinically, SMO-193a.a. is more specifically expressed in glioblastoma than SMO and is relevant to Gli1 expression. Higher expression of SMO-193a.a. predicts worse overall survival of glioblastoma patients, indicating its prognostic value.
Conclusions
Our study reveals that SMO-193a.a., a novel protein encoded by circular SMO, is critical for Hedgehog signaling, drives glioblastoma tumorigenesis and is a novel target for glioblastoma treatment.
Journal Article
Gorlin Syndrome: Recent Advances in Genetic Testing and Molecular and Cellular Biological Research
by
Azuma, Toshifumi
,
Onodera, Shoko
,
Nakamura, Yuriko
in
Animals
,
Basal Cell Nevus Syndrome - diagnosis
,
Basal Cell Nevus Syndrome - genetics
2020
Gorlin syndrome is a skeletal disorder caused by a gain of function mutation in Hedgehog (Hh) signaling. The Hh family comprises of many signaling mediators, which, through complex mechanisms, play several important roles in various stages of development. The Hh information pathway is essential for bone tissue development. It is also the major driver gene in the development of basal cell carcinoma and medulloblastoma. In this review, we first present the recent advances in Gorlin syndrome research, in particular, the signaling mediators of the Hh pathway and their functions at the genetic level. Then, we discuss the phenotypes of mutant mice and Hh signaling-related molecules in humans revealed by studies using induced pluripotent stem cells.
Journal Article
Procyanidin B2 inhibits the activation of hepatic stellate cells and angiogenesis via the Hedgehog pathway during liver fibrosis
2019
Background Liver fibrosis is a wound‐healing process of liver featured by the over‐deposition of extracellular matrix (ECM) and angiogenesis. However, the effective treatment is lacking. Procyanidin B2 (PB2) is a flavonoid extract abundant in grape seeds with anti‐oxidant, anti‐inflammatory and anti‐cancer properties. The present study aimed to determine effects of PB2 on liver fibrosis. Method The CCl4‐induced mouse liver fibrosis model and a human hepatic stellate cell (HSC) line (LX2 cells) were used to study the activation, ECM production and angiogenesis of HSCs through Western blotting analysis, immunohistochemistry, immunofluorescence staining, flow cytometry and tubulogenesis assay. A Hedgehog (Hh) pathway inhibitor (cyclopamine) and Smoothened agonist (SAG) were used to investigate the role of PB2 on Hh pathway. Results The results showed that PB2 could inhibit the proliferation and induce apoptosis of HSCs. PB2 could also down‐regulate the expressions of VEGF‐A, HIF‐1α, α‐SMA, Col‐1 and TGF‐β1 of HSCs in vivo and in vitro. The application of SAG and cyclopamine proved that PB2 targets on Hh pathway. Conclusions PB2 inhibited the Hh pathway to suppress the activation, ECM production and angiogenesis of HSCs, therefore reverses the progression of liver fibrosis in vivo and in vitro.
Journal Article