Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
613
result(s) for
"Heparan Sulfate Proteoglycans - chemistry"
Sort by:
Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism
by
Donalisio, Manuela
,
Martinelli, Chiara
,
Weber, Jan
in
Antiviral drugs
,
Binding
,
Biocompatibility
2018
Viral infections kill millions yearly. Available antiviral drugs are virus-specific and active against a limited panel of human pathogens. There are broad-spectrum substances that prevent the first step of virus-cell interaction by mimicking heparan sulfate proteoglycans (HSPG), the highly conserved target of viral attachment ligands (VALs). The reversible binding mechanism prevents their use as a drug, because, upon dilution, the inhibition is lost. Known VALs are made of closely packed repeating units, but the aforementioned substances are able to bind only a few of them. We designed antiviral nanoparticles with long and flexible linkers mimicking HSPG, allowing for effective viral association with a binding that we simulate to be strong and multivalent to the VAL repeating units, generating forces (∼190 pN) that eventually lead to irreversible viral deformation. Virucidal assays, electron microscopy images, and molecular dynamics simulations support the proposed mechanism. These particles show no cytotoxicity, and in vitro nanomolar irreversible activity against herpes simplex virus (HSV), human papilloma virus, respiratory syncytial virus (RSV), dengue and lenti virus. They are active ex vivo in human cervicovaginal histocultures infected by HSV-2 and in vivo in mice infected with RSV.
Journal Article
Structural basis for FGF hormone signalling
2023
α/βKlotho coreceptors simultaneously engage fibroblast growth factor (FGF) hormones (FGF19, FGF21 and FGF23)
1
,
2
and their cognate cell-surface FGF receptors (FGFR1–4) thereby stabilizing the endocrine FGF–FGFR complex
3
–
6
. However, these hormones still require heparan sulfate (HS) proteoglycan as an additional coreceptor to induce FGFR dimerization/activation and hence elicit their essential metabolic activities
6
. To reveal the molecular mechanism underpinning the coreceptor role of HS, we solved cryo-electron microscopy structures of three distinct 1:2:1:1 FGF23–FGFR–αKlotho–HS quaternary complexes featuring the ‘c’ splice isoforms of FGFR1 (FGFR1c), FGFR3 (FGFR3c) or FGFR4 as the receptor component. These structures, supported by cell-based receptor complementation and heterodimerization experiments, reveal that a single HS chain enables FGF23 and its primary FGFR within a 1:1:1 FGF23–FGFR–αKlotho ternary complex to jointly recruit a lone secondary FGFR molecule leading to asymmetric receptor dimerization and activation. However, αKlotho does not directly participate in recruiting the secondary receptor/dimerization. We also show that the asymmetric mode of receptor dimerization is applicable to paracrine FGFs that signal solely in an HS-dependent fashion. Our structural and biochemical data overturn the current symmetric FGFR dimerization paradigm and provide blueprints for rational discovery of modulators of FGF signalling
2
as therapeutics for human metabolic diseases and cancer.
This study reveals how Klotho and heparan sulfate glycosaminoglycan coreceptors enable FGF hormones to induce asymmetric 1:2 FGF–FGFR dimerization mandatory for FGFR kinase activation and hence signalling.
Journal Article
Proteoglycan-Specific Molecular Switch for RPTPσ Clustering and Neuronal Extension
by
Gallagher, John T.
,
Aricescu, A. Radu
,
Coles, Charlotte H.
in
Amino Acid Sequence
,
Animals
,
Axons
2011
Heparan and chondroitin sulfate proteoglycans (HSPGs and CSPGs, respectively) regulate numerous cell surface signaling events, with typically opposite effects on cell function. CSPGs inhibit nerve regeneration through receptor protein tyrosine phosphatase sigma (RPTPσ). Here we report that RPTPσ acts bimodally in sensory neuron extension, mediating CSPG inhibition and HSPG growth promotion. Crystallographic analyses of a shared HSPG-CSPG binding site reveal a conformational plasticity that can accommodate diverse glycosaminoglycans with comparable affinities. Heparan sulfate and analogs induced RPTPσ ectodomain oligomerization in solution, which was inhibited by chondroitin sulfate. RPTPσ and HSPGs colocalize in puncta on sensory neurons in culture, whereas CSPGs occupy the extracellular matrix. These results lead to a model where proteoglycans can exert opposing effects on neuronal extension by competing to control the oligomerization of a common receptor.
Journal Article
Heparan Sulfate Proteoglycans Biosynthesis and Post Synthesis Mechanisms Combine Few Enzymes and Few Core Proteins to Generate Extensive Structural and Functional Diversity
by
Wild, Rebekka
,
Crétinon, Yoann
,
Annaval, Thibault
in
Animals
,
Biochemistry
,
Biochemistry, Molecular Biology
2020
Glycosylation is a common and widespread post-translational modification that affects a large majority of proteins. Of these, a small minority, about 20, are specifically modified by the addition of heparan sulfate, a linear polysaccharide from the glycosaminoglycan family. The resulting molecules, heparan sulfate proteoglycans, nevertheless play a fundamental role in most biological functions by interacting with a myriad of proteins. This large functional repertoire stems from the ubiquitous presence of these molecules within the tissue and a tremendous structural variety of the heparan sulfate chains, generated through both biosynthesis and post synthesis mechanisms. The present review focusses on how proteoglycans are “gagosylated” and acquire structural complexity through the concerted action of Golgi-localized biosynthesis enzymes and extracellular modifying enzymes. It examines, in particular, the possibility that these enzymes form complexes of different modes of organization, leading to the synthesis of various oligosaccharide sequences.
Journal Article
Heparan Sulfate Proteoglycan Signaling in Tumor Microenvironment
2020
In the last few decades, heparan sulfate (HS) proteoglycans (HSPGs) have been an intriguing subject of study for their complex structural characteristics, their finely regulated biosynthetic machinery, and the wide range of functions they perform in living organisms from development to adulthood. From these studies, key roles of HSPGs in tumor initiation and progression have emerged, so that they are currently being explored as potential biomarkers and therapeutic targets for cancers. The multifaceted nature of HSPG structure/activity translates in their capacity to act either as inhibitors or promoters of tumor growth and invasion depending on the tumor type. Deregulation of HSPGs resulting in malignancy may be due to either their abnormal expression levels or changes in their structure and functions as a result of the altered activity of their biosynthetic or remodeling enzymes. Indeed, in the tumor microenvironment, HSPGs undergo structural alterations, through the shedding of proteoglycan ectodomain from the cell surface or the fragmentation and/or desulfation of HS chains, affecting HSPG function with significant impact on the molecular interactions between cancer cells and their microenvironment, and tumor cell behavior. Here, we overview the structural and functional features of HSPGs and their signaling in the tumor environment which contributes to tumorigenesis and cancer progression.
Journal Article
Heparan sulphate proteoglycans fine-tune mammalian physiology
by
Bishop, Joseph R.
,
Esko, Jeffrey D.
,
Schuksz, Manuela
in
Anatomy & physiology
,
Animals
,
Carbohydrates
2007
Heparan sulphate proteoglycans reside on the plasma membrane of all animal cells studied so far and are a major component of extracellular matrices. Studies of model organisms and human diseases have demonstrated their importance in development and normal physiology. A recurrent theme is the electrostatic interaction of the heparan sulphate chains with protein ligands, which affects metabolism, transport, information transfer, support and regulation in all organ systems. The importance of these interactions is exemplified by phenotypic studies of mice and humans bearing mutations in the core proteins or the biosynthetic enzymes responsible for assembling the heparan sulphate chains.
Journal Article
Extracellular distribution of diffusible growth factors controlled by heparan sulfate proteoglycans during mammalian embryogenesis
by
Kimura-Yoshida, Chiharu
,
Matsuo, Isao
in
Animals
,
Biological Transport - physiology
,
Diffusible Growth Factors
2014
During mouse embryogenesis, diffusible growth factors, i.e. fibroblast growth factors, Wnt, bone morphogenetic protein and Hedgehog family members, emanating from localized areas can travel through the extracellular space and reach their target cells to specify the cell fate and form tissue architectures in coordination. However, the mechanisms by which these growth factors travel great distances to their target cells and control the signalling activity as morphogens remain an enigma. Recent studies in mice and other model animals have revealed that heparan sulfate proteoglycans (HSPGs) located on the cell surface (e.g. syndecans and glypicans) and in the extracellular matrix (ECM; e.g. perlecan and agrin) play crucial roles in the extracellular distribution of growth factors. Principally, the function of HSPGs depends primarily on the fine features and localization of their heparan sulfate glycosaminoglycan chains. Cell-surface-tethered HSPGs retain growth factors as co-receptors and/or endocytosis mediators, and enzymatic release of HSPGs from the cell membrane allows HSPGs to transport or move multiple growth factors. By contrast, ECM-associated HSPGs function as a reservoir or barrier in a context-dependent manner. This review is focused on our current understanding of the extracellular distribution of multiple growth factors controlled by HSPGs in mammalian development.
Journal Article
Heparan sulfate C5-epimerase is essential for heparin biosynthesis in mast cells
by
Li, Jin-Ping
,
Rodewald, Hans-Reimer
,
Lindahl, Ulf
in
Animals
,
Biochemical Engineering
,
Biochemistry
2006
Biosynthesis of heparin, a mast cell–derived glycosaminoglycan with widespread importance in medicine, has not been fully elucidated. In biosynthesis of heparan sulfate (HS), a structurally related polysaccharide, HS glucuronyl C5-epimerase (Hsepi) converts
D
-glucuronic acid (GlcA) to
L
-iduronic acid (IdoA) residues. We have generated
Hsepi
-null mouse mutant mast cells, and we show that the same enzyme catalyzes the generation of IdoA in heparin and that 'heparin' lacking IdoA shows a distorted
O
-sulfation pattern.
Journal Article
HIV-1 Tat and Heparan Sulfate Proteoglycans Orchestrate the Setup of in Cis and in Trans Cell-Surface Interactions Functional to Lymphocyte Trans-Endothelial Migration
by
Urbinati, Chiara
,
D’Ursi, Pasqualina
,
Rusnati, Marco
in
Acquired immune deficiency syndrome
,
AIDS
,
Cell Adhesion
2021
HIV-1 transactivating factor Tat is released by infected cells. Extracellular Tat homodimerizes and engages several receptors, including integrins, vascular endothelial growth factor receptor 2 (VEGFR2) and heparan sulfate proteoglycan (HSPG) syndecan-1 expressed on various cells. By means of experimental cell models recapitulating the processes of lymphocyte trans-endothelial migration, here, we demonstrate that upon association with syndecan-1 expressed on lymphocytes, Tat triggers simultaneously the in cis activation of lymphocytes themselves and the in trans activation of endothelial cells (ECs). This “two-way” activation eventually induces lymphocyte adhesion and spreading onto the substrate and vascular endothelial (VE)-cadherin reorganization at the EC junctions, with consequent endothelial permeabilization, leading to an increased extravasation of Tat-presenting lymphocytes. By means of a panel of biochemical activation assays and specific synthetic inhibitors, we demonstrate that during the above-mentioned processes, syndecan-1, integrins, FAK, src and ERK1/2 engagement and activation are needed in the lymphocytes, while VEGFR2, integrin, src and ERK1/2 are needed in the endothelium. In conclusion, the Tat/syndecan-1 complex plays a central role in orchestrating the setup of the various in cis and in trans multimeric complexes at the EC/lymphocyte interface. Thus, by means of computational molecular modelling, docking and dynamics, we also provide a characterization at an atomic level of the binding modes of the Tat/heparin interaction, with heparin herein used as a structural analogue of the heparan sulfate chains of syndecan-1.
Journal Article
Heparan Sulfate Proteoglycans (HSPGs) and Their Degradation in Health and Disease
2025
Heparan sulfate proteoglycans (HSPGs) are essential constituents of the extracellular matrix (ECM) and cell surface, orchestrating a wide range of biological processes, such as cell adhesion, migration, proliferation, and intercellular communication. Through their highly sulfated glycosaminoglycan chains, HSPGs serve as crucial modulators of bioavailability and signaling of growth factors, cytokines, and chemokines, thereby influencing tissue homeostasis. Their dynamic remodeling is mediated by numerous enzymes, with heparanase (HPSE) playing a predominant role as the only known human endo-β-D-glucuronidase that specifically cleaves heparan sulfate chains. Beyond its well-documented enzymatic activity in ECM degradation and the release of HS-bound molecules, HPSE also exerts non-enzymatic functions that regulate intracellular signaling cascades, transcriptional programs, and immune cell behavior. Dysregulated HPSE expression or activity has been implicated in various pathological conditions, including fibrosis, chronic inflammation, cancer progression, angiogenesis, metastasis, and immune evasion, positioning this enzyme as a pivotal driver of ECM plasticity in both health and disease. This review provides an updated overview of HSPG biosynthesis, structure, localization, and functional roles, emphasizing the activity of HPSE and its impact on tissue remodeling and disease pathogenesis. We further explored its involvement in the hallmark processes of cancer, the inflammatory tumor microenvironment, and its contribution to fibrosis. Finally, we summarize current therapeutic strategies targeting HPSE, outlining their potential to restore ECM homeostasis and counteract HPSE-driven pathological mechanisms. A deeper understanding of the HSPG/HPSE axis may pave the way for innovative therapeutic interventions in cancer, inflammatory disorders, and fibrotic diseases.
Journal Article