Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
14,937 result(s) for "Heterozygosity"
Sort by:
Correction: Variation in Heterozygosity Predicts Variation in Human Substitution Rates between Populations, Individuals and Genomic Regions
The labels and legends for the two figures are in correct order. Citation: Amos W (2013) Correction: Variation in Heterozygosity Predicts Variation in Human Substitution Rates between Populations, Individuals and Genomic Regions.
Adjuvant and concurrent temozolomide for 1p/19q non-co-deleted anaplastic glioma (CATNON; EORTC study 26053-22054): second interim analysis of a randomised, open-label, phase 3 study
The CATNON trial investigated the addition of concurrent, adjuvant, and both current and adjuvant temozolomide to radiotherapy in adults with newly diagnosed 1p/19q non-co-deleted anaplastic gliomas. The benefit of concurrent temozolomide chemotherapy and relevance of mutations in the IDH1 and IDH2 genes remain unclear. This randomised, open-label, phase 3 study done in 137 institutions across Australia, Europe, and North America included patients aged 18 years or older with newly diagnosed 1p/19q non-co-deleted anaplastic gliomas and a WHO performance status of 0–2. Patients were randomly assigned (1:1:1:1) centrally using a minimisation technique to radiotherapy alone (59·4 Gy in 33 fractions; three-dimensional conformal radiotherapy or intensity-modulated radiotherapy), radiotherapy with concurrent oral temozolomide (75 mg/m2 per day), radiotherapy with adjuvant oral temozolomide (12 4-week cycles of 150–200 mg/m2 temozolomide given on days 1–5), or radiotherapy with both concurrent and adjuvant temozolomide. Patients were stratified by institution, WHO performance status score, age, 1p loss of heterozygosity, the presence of oligodendroglial elements on microscopy, and MGMT promoter methylation status. The primary endpoint was overall survival adjusted by stratification factors at randomisation in the intention-to-treat population. A second interim analysis requested by the independent data monitoring committee was planned when two-thirds of total required events were observed to test superiority or futility of concurrent temozolomide. This study is registered with ClinicalTrials.gov, NCT00626990. Between Dec 4, 2007, and Sept 11, 2015, 751 patients were randomly assigned (189 to radiotherapy alone, 188 to radiotherapy with concurrent temozolomide, 186 to radiotherapy and adjuvant temozolomide, and 188 to radiotherapy with concurrent and adjuvant temozolomide). Median follow-up was 55·7 months (IQR 41·0–77·3). The second interim analysis declared futility of concurrent temozolomide (median overall survival was 66·9 months [95% CI 45·7–82·3] with concurrent temozolomide vs 60·4 months [45·7–71·5] without concurrent temozolomide; hazard ratio [HR] 0·97 [99·1% CI 0·73–1·28], p=0·76). By contrast, adjuvant temozolomide improved overall survival compared with no adjuvant temozolomide (median overall survival 82·3 months [95% CI 67·2–116·6] vs 46·9 months [37·9–56·9]; HR 0·64 [95% CI 0·52–0·79], p<0·0001). The most frequent grade 3 and 4 toxicities were haematological, occurring in no patients in the radiotherapy only group, 16 (9%) of 185 patients in the concurrent temozolomide group, and 55 (15%) of 368 patients in both groups with adjuvant temozolomide. No treatment-related deaths were reported. Adjuvant temozolomide chemotherapy, but not concurrent temozolomide chemotherapy, was associated with a survival benefit in patients with 1p/19q non-co-deleted anaplastic glioma. Clinical benefit was dependent on IDH1 and IDH2 mutational status. Merck Sharpe & Dohme.
Signatures of copy number alterations in human cancer
Gains and losses of DNA are prevalent in cancer and emerge as a consequence of inter-related processes of replication stress, mitotic errors, spindle multipolarity and breakage–fusion–bridge cycles, among others, which may lead to chromosomal instability and aneuploidy 1 , 2 . These copy number alterations contribute to cancer initiation, progression and therapeutic resistance 3 – 5 . Here we present a conceptual framework to examine the patterns of copy number alterations in human cancer that is widely applicable to diverse data types, including whole-genome sequencing, whole-exome sequencing, reduced representation bisulfite sequencing, single-cell DNA sequencing and SNP6 microarray data. Deploying this framework to 9,873 cancers representing 33 human cancer types from The Cancer Genome Atlas 6 revealed a set of 21 copy number signatures that explain the copy number patterns of 97% of samples. Seventeen copy number signatures were attributed to biological phenomena of whole-genome doubling, aneuploidy, loss of heterozygosity, homologous recombination deficiency, chromothripsis and haploidization. The aetiologies of four copy number signatures remain unexplained. Some cancer types harbour amplicon signatures associated with extrachromosomal DNA, disease-specific survival and proto-oncogene gains such as MDM2 . In contrast to base-scale mutational signatures, no copy number signature was associated with many known exogenous cancer risk factors. Our results synthesize the global landscape of copy number alterations in human cancer by revealing a diversity of mutational processes that give rise to these alterations. A new framework enables a pan-cancer reference set of copy number signatures derived from allele-specific profiles from different experimental assays.
Pervasive chromosomal instability and karyotype order in tumour evolution
Chromosomal instability in cancer consists of dynamic changes to the number and structure of chromosomes 1 , 2 . The resulting diversity in somatic copy number alterations (SCNAs) may provide the variation necessary for tumour evolution 1 , 3 , 4 . Here we use multi-sample phasing and SCNA analysis of 1,421 samples from 394 tumours across 22 tumour types to show that continuous chromosomal instability results in pervasive SCNA heterogeneity. Parallel evolutionary events, which cause disruption in the same genes (such as BCL9 ,  MCL1 , ARNT (also known as HIF1B ), TERT and MYC ) within separate subclones, were present in 37% of tumours. Most recurrent losses probably occurred before whole-genome doubling, that was found as a clonal event in 49% of tumours. However, loss of heterozygosity at the human leukocyte antigen (HLA) locus and loss of chromosome 8p to a single haploid copy recurred at substantial subclonal frequencies, even in tumours with whole-genome doubling, indicating ongoing karyotype remodelling. Focal amplifications that affected chromosomes 1q21 (which encompasses BCL9, MCL1 and ARNT ), 5p15.33 ( TERT ), 11q13.3 ( CCND1 ), 19q12 ( CCNE1 ) and 8q24.1 ( MYC ) were frequently subclonal yet appeared to be clonal within single samples. Analysis of an independent series of 1,024 metastatic samples revealed that 13 focal SCNAs were enriched in metastatic samples, including gains in chromosome 8q24.1 (encompassing MYC ) in clear cell renal cell carcinoma and chromosome 11q13.3 (encompassing CCND1 ) in HER2 + breast cancer. Chromosomal instability may enable the continuous selection of SCNAs, which are established as ordered events that often occur in parallel, throughout tumour evolution. Chromosomal instability enables the continuous selection of somatic copy number alterations, which are established as ordered events that often occur in parallel, throughout tumour evolution and metastasis.
Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia
We identified genetic mutations in CD19 and loss of heterozygosity at the time of CD19 – relapse to chimeric antigen receptor (CAR) therapy. The mutations are present in the vast majority of resistant tumor cells and are predicted to lead to a truncated protein with a nonfunctional or absent transmembrane domain and consequently to a loss of surface antigen. This irreversible loss of CD19 advocates for an alternative targeting or combination CAR approach. Mutations in the CD19 gene suggesting irreversible loss of its surface expression are identified in the majority of analyzed cases of CD19 – relapse in two clinical trials of pediatric ALL CD19 CAR T therapy, offering considerations for the rational choice of follow-up therapies.
Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations
The authors surveyed whole-exome and RNA-sequencing data from 252 unique pluripotent stem cell lines, some of which are in the pipeline for clinical use, and found that approximately 5% of cell lines had acquired mutations in the TP53 gene that allow mutant cells to rapidly outcompete non-mutant cells, but do not prevent differentiation. Expansion of human pluripotent stem cells carrying P53 mutations Copy number variants at particular genomic locations have been shown to arise in human pluripotent stem cells (hPSCs) under certain culture conditions, but the extent of acquired mutations in such culture remains to be determined. Kevin Eggan and colleagues surveyed the exomes of 140 human embryonic stem cell (hESC) lines, some of which are in the pipeline for clinical use.They identified mosaic mutations in the TP53 gene in a subset of cells for five unrelated hESC lines and show that the cells carrying the mutations outcompeted the non-mutant cells and could readily differentiate. Similar mutations were also identified by mining published datasets for an additional 14 hESC lines and more than 100 human induced PSC lines. The study highlights the need for in-depth characterization of cells derived from hPSCs before their use in the clinic. Human pluripotent stem cells (hPS cells) can self-renew indefinitely, making them an attractive source for regenerative therapies. This expansion potential has been linked with the acquisition of large copy number variants that provide mutated cells with a growth advantage in culture 1 , 2 , 3 . The nature, extent and functional effects of other acquired genome sequence mutations in cultured hPS cells are not known. Here we sequence the protein-coding genes (exomes) of 140 independent human embryonic stem cell (hES cell) lines, including 26 lines prepared for potential clinical use 4 . We then apply computational strategies for identifying mutations present in a subset of cells in each hES cell line 5 . Although such mosaic mutations were generally rare, we identified five unrelated hES cell lines that carried six mutations in the TP53 gene that encodes the tumour suppressor P53. The TP53 mutations we observed are dominant negative and are the mutations most commonly seen in human cancers. We found that the TP53 mutant allelic fraction increased with passage number under standard culture conditions, suggesting that the P53 mutations confer selective advantage. We then mined published RNA sequencing data from 117 hPS cell lines, and observed another nine TP53 mutations, all resulting in coding changes in the DNA-binding domain of P53. In three lines, the allelic fraction exceeded 50%, suggesting additional selective advantage resulting from the loss of heterozygosity at the TP53 locus. As the acquisition and expansion of cancer-associated mutations in hPS cells may go unnoticed during most applications, we suggest that careful genetic characterization of hPS cells and their differentiated derivatives be carried out before clinical use.
Monogenic and polygenic inheritance become instruments for clonal selection
Clonally expanded blood cells that contain somatic mutations (clonal haematopoiesis) are commonly acquired with age and increase the risk of blood cancer 1 – 9 . The blood clones identified so far contain diverse large-scale mosaic chromosomal alterations (deletions, duplications and copy-neutral loss of heterozygosity (CN-LOH)) on all chromosomes 1 , 2 , 5 , 6 , 9 , but the sources of selective advantage that drive the expansion of most clones remain unknown. Here, to identify genes, mutations and biological processes that give selective advantage to mutant clones, we analysed genotyping data from the blood-derived DNA of 482,789 participants from the UK Biobank 10 . We identified 19,632 autosomal mosaic chromosomal alterations and analysed these for relationships to inherited genetic variation. We found 52 inherited, rare, large-effect coding or splice variants in 7 genes that were associated with greatly increased vulnerability to clonal haematopoiesis with specific acquired CN-LOH mutations. Acquired mutations systematically replaced the inherited risk alleles (at MPL ) or duplicated them to the homologous chromosome (at FH , NBN , MRE11 , ATM , SH2B3 and TM2D3 ). Three of the genes ( MRE11 , NBN and ATM ) encode components of the MRN–ATM pathway, which limits cell division after DNA damage and telomere attrition 11 – 13 ; another two ( MPL and SH2B3 ) encode proteins that regulate the self-renewal of stem cells 14 – 16 . In addition, we found that CN-LOH mutations across the genome tended to cause chromosomal segments with alleles that promote the expansion of haematopoietic cells to replace their homologous (allelic) counterparts, increasing polygenic drive for blood-cell proliferation traits. Readily acquired mutations that replace chromosomal segments with their homologous counterparts seem to interact with pervasive inherited variation to create a challenge for lifelong cytopoiesis. Analysis of blood-derived DNA from participants in the UK Biobank demonstrates that clonal expansions of acquired copy-neutral loss of heterozygosity mutations act on inherited alleles along a chromosome arm by modifying their allelic dosages.
Immune Escape Mechanisms in Non Small Cell Lung Cancer
Development of strong immune evasion has been traditionally associated with the late stages of solid tumor progression, since advanced cancers are more likely to have reached the third phase of the immunoediting process. However, by integrating a variety of approaches, evidence for active immune escape mechanisms has been found even in the pre-invasive lesions that later progress to the main NSCLC histotypes. Pre-invasive lesions of adenocarcinoma (LUAD) and of squamous cell carcinoma (LUSC) can show impaired antigen presentation, loss of heterozygosity at the Human Leukocyte Antigen (HLA) region, neoantigen silencing, activation of immune checkpoints, altered TH1/TH2 cytokine ratios, and immune contexture evolution. Analysis of large panels of LUAD vs. LUSC, of early stage NSCLC vs. normal lung tissue, of specific molecular subsets of NSCLC, and of distinct regions within the same tumor, indicates that all these processes of immune escape continue to evolve in the invasive stage of NSCLC, are associated with inter- and intra-tumor heterogeneity, and contribute to resistance to therapy by immune checkpoint blockade (ICB). In this review, we will discuss the most recent evidence on immune escape mechanisms developing from the precursor to invasive stage in NSCLC, and the contribution of immune evasion to resistance to ICB in lung cancer.
Landscape of homologous recombination deficiencies in solid tumours: analyses of two independent genomic datasets
Background DNA repair deficiencies are characteristic of cancer and homologous recombination deficiency (HRD) is the most common. HRD sensitizes tumour cells to PARP inhibitors so it is important to understand the landscape of HRD across different solid tumour types. Methods Germline and somatic BRCA mutations in breast and ovarian cancers were evaluated using sequencing data from The Cancer Genome Atlas (TCGA) database. Secondly, a larger independent genomic dataset was analysed to validate the TCGA results and determine the frequency of germline and somatic mutations across 15 different candidate homologous recombination repair (HRR) genes, and their relationship with the genetic events of bi-allelic loss, loss of heterozygosity (LOH) and tumour mutation burden (TMB). Results Approximately one-third of breast and ovarian cancer BRCA mutations were somatic. These showed a similar degree of bi-allelic loss and clinical outcomes to germline mutations, identifying potentially 50% more patients that may benefit from precision treatments. HRR mutations were present in sizable proportions in all tumour types analysed and were associated with high TMB and LOH scores. We also identified numerous BRCA reversion mutations across all tumour types. Conclusions Our results will facilitate future research into the efficacy of precision oncology treatments, including PARP and immune checkpoint inhibitors.