Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
30,224 result(s) for "Human genome sequencing"
Sort by:
Flexible, production-scale, human whole genome sequencing on a benchtop sequencer
Human whole-genome sequencing (hWGS) provides comprehensive genomic information that can help guide research in disease prevention and treatment. Recent advancements in sequencing technology have improved sequencing quality and further reduced sequencing costs on bench-top sized instruments, making whole-genome sequencing an accessible technology for broader use. Here, we demonstrate the feasibility of a large WGS project using a benchtop sequencer in a small laboratory setting, on a scale previously reserved for production-scale machines. In this project, 807 samples were prepared and sequenced across 313 flow cells, with high sequencing quality at a median %Q30 of 96.6% and a median %Q40 of 89.31%. To screen library quality and maximize sample yield, we utilized 48-plex sample pre-pool ‘QC’ runs to provide > 1 × coverage per sample prior to sample pooling and full-depth sequencing, providing valuable sample-level insights prior to full-depth sequencing. With this strategy, we consistently achieved > 30 × human whole genome sequencing of three-plex sample trios with standard settings. To demonstrate additional flexibility present in the platform, we explored two different use cases 1) large insert sizes (1kb +) library to achieve superior genome coverage; 2) proof of concept rapid WGS sequencing to minimize sample to answer turnaround time for time-critical sequencing applications. Sequencing of a 2 × 100 > 30 × human WGS can be achieved in < 12 h and subsequent file generation in < 1 additional hour. This study provides a cost-effective and flexible real-world demonstration of achieving both high quality hWGS sequencing and instrument flexibility without the need for complex batching schemes or factory-sized sequencers.
Mitochondrial genome copy number measured by DNA sequencing in human blood is strongly associated with metabolic traits via cell-type composition differences
Background Mitochondrial genome copy number (MT-CN) varies among humans and across tissues and is highly heritable, but its causes and consequences are not well understood. When measured by bulk DNA sequencing in blood, MT-CN may reflect a combination of the number of mitochondria per cell and cell-type composition. Here, we studied MT-CN variation in blood-derived DNA from 19184 Finnish individuals using a combination of genome (N = 4163) and exome sequencing (N = 19034) data as well as imputed genotypes (N = 17718). Results We identified two loci significantly associated with MT-CN variation: a common variant at the MYB-HBS1L locus (P = 1.6 × 10 −8 ), which has previously been associated with numerous hematological parameters; and a burden of rare variants in the TMBIM1 gene (P = 3.0 × 10 −8 ), which has been reported to protect against non-alcoholic fatty liver disease. We also found that MT-CN is strongly associated with insulin levels (P = 2.0 × 10 −21 ) and other metabolic syndrome (metS)-related traits. Using a Mendelian randomization framework, we show evidence that MT-CN measured in blood is causally related to insulin levels. We then applied an MT-CN polygenic risk score (PRS) derived from Finnish data to the UK Biobank, where the association between the PRS and metS traits was replicated. Adjusting for cell counts largely eliminated these signals, suggesting that MT-CN affects metS via cell-type composition. Conclusion These results suggest that measurements of MT-CN in blood-derived DNA partially reflect differences in cell-type composition and that these differences are causally linked to insulin and related traits.
A comprehensive whole genome database of ethnic minority populations
China, is characterized by its remarkable ethnical diversity, which necessitates whole genome variation data from multiple populations as crucial tools for advancing population genetics and precision medical research. However, there has been a scarcity of research concentrating on the whole genome of ethnic minority groups. To fill this gap, we developed the Guizhou Multi-ethnic Genome Database (GMGD). It comprises whole genome sequencing data from 476 healthy unrelated individuals spanning 11 ethnic minorities groups in Guizhou Province, Southwest China, including Bouyei, Dong, Miao, Yi, Bai, Gelo, Zhuang, Tujia, Yao, Hui, and Sui. The GMGD database comprises more than 16.33 million variants in GRCh38 and 16.20 million variants in GRCh37. Among these, approximately 11.9% (1,956,322) of the variants in GRCh38 and 18.5% (3,009,431) of the variants in GRCh37 are entirely new and do not exist in the dbSNP database. These novel variants shed light on the genetic diversity landscape across these populations, providing valuable insights with an average coverage of 5.5 ×. This makes GMGD the largest genome-wide database encompassing the most diverse ethnic groups to date. The GMGD interactive interface facilitates researchers with multi-dimensional mutation search methods and displays population frequency differences among global populations. Furthermore, GMGD is equipped with a genotype-imputation function, enabling enhanced capabilities for low-depth genomic research or targeted region capture studies. GMGD offers unique insights into the genomic variation landscape of different ethnic groups, which are freely accessible at https://db.cngb.org/pop/gmgd/ .
De Novo Assembly of Two Swedish Genomes Reveals Missing Segments from the Human GRCh38 Reference and Improves Variant Calling of Population-Scale Sequencing Data
The current human reference sequence (GRCh38) is a foundation for large-scale sequencing projects. However, recent studies have suggested that GRCh38 may be incomplete and give a suboptimal representation of specific population groups. Here, we performed a de novo assembly of two Swedish genomes that revealed over 10 Mb of sequences absent from the human GRCh38 reference in each individual. Around 6 Mb of these novel sequences (NS) are shared with a Chinese personal genome. The NS are highly repetitive, have an elevated GC-content, and are primarily located in centromeric or telomeric regions. Up to 1 Mb of NS can be assigned to chromosome Y, and large segments are also missing from GRCh38 at chromosomes 14, 17, and 21. Inclusion of NS into the GRCh38 reference radically improves the alignment and variant calling from short-read whole-genome sequencing data at several genomic loci. A re-analysis of a Swedish population-scale sequencing project yields > 75,000 putative novel single nucleotide variants (SNVs) and removes > 10,000 false positive SNV calls per individual, some of which are located in protein coding regions. Our results highlight that the GRCh38 reference is not yet complete and demonstrate that personal genome assemblies from local populations can improve the analysis of short-read whole-genome sequencing data.
Molecular Biology Technology
This chapter contains sections titled: Cut, Copy, and Paste Restriction Enzymes DNA Cloning Is Copying PCR Is Cloning without the Bacteria DNA Sequencing References
IMPROVING SEQUENCE-BASED GENOTYPE CALLS WITH LINKAGE DISEQUILIBRIUM AND PEDIGREE INFORMATION
Whole and targeted sequencing of human genomes is a promising, increasingly feasible tool for discovering genetic contributions to risk of complex diseases. A key step is calling an individual's genotype from the multiple aligned short read sequences of his DNA, each of which is subject to nucleotide read error. Current methods are designed to call genotypes separately at each locus from the sequence data of unrelated individuals. Here we propose likelihood-based methods that improve calling accuracy by exploiting two features of sequence data. The first is the linkage disequilibrium (LD) between nearby SNPs. The second is the Mendelian pedigree information available when related individuals are sequenced. In both cases the likelihood involves the probabilities of read variant counts given genotypes, summed over the unobserved genotypes. Parameters governing the prior genotype distribution and the read error rates can be estimated either from the sequence data itself or from external reference data. We use simulations and synthetic read data based on the 1000 Genomes Project to evaluate the performance of the proposed methods. An R-program to apply the methods to small families is freely available at http://med.stanford.edu/epidemiology/PHGC/.
Information, communication, and cancer patients’ trust in the physician: what challenges do we have to face in an era of precision cancer medicine?
PurposeDespite promising achievements in precision cancer medicine (PCM), participating patients are still faced with manifold uncertainties, especially regarding a potential treatment benefit of molecular diagnostics (MD). Hence, MD poses considerable challenges for patient information and communication. To meet these challenges, healthcare professionals need to gain deeper insight into patients’ subjective experiences. Therefore, this qualitative study examined information aspects of MD programs in cancer patients.MethodsIn two German Comprehensive Cancer Centers, 30 cancer patients undergoing MD participated in semi-structured interviews on information transfer and information needs regarding MD. Additionally, patients provided sociodemographic and medical data and indicated their subjective level of information (visual analogue scale, VAS, 0–10).ResultsOn average patients had high levels of information (mean = 7, median = 8); nevertheless 20% (n = 6) showed an information level below 5 points. Qualitative analysis revealed that patients show limited understanding of the complex background of MD and have uncertainties regarding their personal benefit. Further, patients described unmet information needs. Existential threat in awaiting the results was experienced as burdensome. To withstand the strains of their situation, patients emphasized the importance of trusting their physician.ConclusionThe challenges in PCM consist in providing unambiguous information, especially concerning treatment benefit, and providing guidance and support. Therefore, psycho-oncology needs to develop guidelines for adequate patient communication in order to help healthcare providers and cancer patients to handle these challenges in the developing field of PCM.
Genome Databases
This chapter contains sections titled: Genome Sequencing Entrez BLAST Genome Annotation Genome Browser Human Genetic Diseases A System for Naming Genes Model Organisms (Comparative Genomics) Sequencing Other Genomes References
The Genome, Genes and Brain – Tailored Drugs
This chapter contains sections titled: Introduction Issues in new drug development Early development of psychiatric pharmaceutical entities Advances in research technology Review of genetics Activation of genes by signal transduction cascades The human genome The sequencing of the genome DNA variation Genes and illness Genomic findings, potential targets and new drug development Conclusion