Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
70
result(s) for
"Human mastadenovirus C"
Sort by:
Pediatric Infections by Human mastadenovirus C Types 2, 89, and a Recombinant Type Detected in Japan between 2011 and 2018
by
Masaaki Kobayashi
,
Naomi Nojiri
,
Masami Konagaya
in
adenovirus typing
,
Adenoviruses
,
Conserved sequence
2019
Between 2011 and 2018, 518 respiratory adenovirus infections were diagnosed in a pediatric clinic in Shizuoka, Japan. Detection and typing were performed by partial sequencing of both hexon- and fiber-coding regions which identified: adenovirus type 1 (Ad-1, n = 85), Ad-2 (n = 160), Ad-3 (n = 193), Ad-4 (n = 18), Ad-5 (n = 27), Ad-11 (n = 2), Ad-54 (n = 3), and Ad-56 (n = 1). Considering previous reports of the circulation of an endemic recombinant Ad-2, e.g., Ad-89, 100 samples typed as Ad-2 were randomly selected for further molecular typing by sequencing the penton base-coding region. Despite the high nucleotide sequence conservation in the penton base- coding region, 27 samples showed 98% identity to Ad-2. Furthermore, 14 samples showed 97.7% identity to Ad-2 and 99.8% identity to Ad-89, while the remaining 13 samples showed an average 98% pairwise identity to other Ad-C types and clustered with Ad-5. The samples typed as Ad-89 (n = 14) and as a recombinant Ad type (P5H2F2) (n = 13) represented 27% of cases originally diagnosed as Ad-2, and were detected sporadically. Therefore, two previously uncharacterized types in Japan, Ad-89 and a recombinant Ad-C, were shown to circulate in children. This study creates a precedent to evaluate the epidemiology and divergence among Ad-C types by comprehensively considering the type classification of adenoviruses.
Journal Article
Evaluation of Mastadenovirus and Rotavirus Presence in Phyllostomid, Vespertilionid, and Molossid Bats Captured in Rio Grande do Sul, Southern Brazil
by
Hansen, Alana Witt
,
Witt, André Alberto
,
Weber, Matheus Nunes
in
Adenoviridae Infections - veterinary
,
Adenoviridae Infections - virology
,
Adenoviruses
2024
Bat-borne viruses may affect public health and the global economy. These mammals have a wide geographical distribution and unique biological, physiological, and immunogenic characteristics, allowing the dissemination of many known and unknown viruses. Enteric viruses, such as adeno (AdV) and rotaviruses, are recognized as the main causative agents of disease and outbreaks. In the present study, the presence of viruses from
Adenoviridae
and
Reoviridae
families was evaluated in molossid, phyllostomid, and vespertilionid bats captured in Rio Grande do Sul, Southern Brazil, between September 2021 and July 2022. Sixty bat rectal swabs were analyzed by PCR. Eight (13.3%) samples were positive for adenovirus and classified as human mastadenovirus C (HAdV-C) (three samples) and HAdV-E (five samples) by sequencing followed by phylogenetic analysis. All samples were negative in rotavirus specific RT-PCR. This is the first study to describe the presence of HAdV in samples of
Glossophaga soricina
,
Eptesicus brasiliensis
, and
Histiotus velatus
. Furthermore, the presence of HAdV-E in bats was reported, which is unusual and may suggest that other HAdV genotypes, in addition to HAdV-C, may also be harbored by wild animals. The data generated in the present study reinforces the importance of eco-surveillance of viral agents related to diseases in humans and wild animals. In addition, it is essential to identify possible new hosts or reservoirs that increase the risk of spillover and dissemination of infectious pathogens, helping to prevent and control zoonotic diseases.
Journal Article
Superior immunogenicity of mRNA over adenoviral vectored COVID-19 vaccines reflects B cell dynamics independent of anti-vector immunity: Implications for future pandemic vaccines
by
Mathew, Suja
,
Jessica Hadiprodjo, A.
,
Khatami, Ameneh
in
Adenoviruses
,
Allergy and Immunology
,
Antibodies
2023
•vaccine induced higher Surrogate neutralizing antibody and RBD-targeted B cell responses were greater after mRNA compared to vector vaccine.•Although vector vaccine boosted antibodies against human Adenovirus, those titres did not correlate with anti-spike titres.•Further work is needed to improve the immunogenicity of vector vaccines as they remain an important option for pandemic and outbreak responses.
Both vector and mRNA vaccines were an important part of the response to the COVID-19 pandemic and may be required in future outbreaks and pandemics. The aim of this study was to validate whether immunogenicity differs for adenoviral vectored (AdV) versus mRNA vaccines against SARS-CoV-2, and to investigate how anti-vector immunity and B cell dynamics modulate immunogenicity. We enrolled SARS-CoV-2 infection-naïve health care workers who had received two doses of either AdV AZD1222 (n = 184) or mRNA BNT162b2 vaccine (n = 274) between April and October 2021. Blood was collected at least once, 10–48 days after vaccine dose 2 for antibody and B cell analyses. Median ages were 42 and 39 years, for AdV and mRNA vaccinees, respectively. Surrogate virus neutralization test (sVNT) and spike binding antibody titres were a median of 4.2 and 2.2 times lower, respectively, for AdV compared to mRNA vaccinees (p < 0.001). Median percentages of memory B cells that recognized fluorescent-tagged spike and RBD were 2.9 and 8.3 times lower, respectively for AdV compared to mRNA vaccinees. Titres of IgG reactive with human adenovirus type 5 hexon protein rose a median of 2.2-fold after AdV vaccination but were not correlated with anti-spike antibody titres. Together the results show that mRNA induced substantially more sVNT antibody than AdV vaccine, which reflected greater B cell expansion and targeting of the RBD rather than an attenuating effect of anti-vector antibodies.
ClinicalTrials.gov Identifier: NCT05110911.
Journal Article
Adenovirus-vectored PDCoV vaccines induce potent humoral and cellular immune responses in mice
by
Zhang, Zhongwang
,
Pan, Li
,
Yu, Ruiming
in
Ad5-vector vaccine
,
Adenoviruses
,
Allergy and Immunology
2023
Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that causes severe watery diarrhea, vomiting, dehydration and high mortality in piglets, resulting in significant economic losses by the global pig industry. Recently, PDCoV has also shown the potential for cross-species transmission. However, there are currently few vaccine studies and no commercially available vaccines for PDCoV. Hence, here, two novel human adenovirus 5 (Ad5)-vectored vaccines expressing codon-optimized forms of the PDCoV spike (S) glycoprotein (Ad-PD-tPA-Sopt) and S1 glycoprotein (Ad-PD-oriSIP-S1opt) were constructed, and their effects were evaluated via intramuscular (IM) injection in BALB/c mice with different doses and times. Both vaccines elicited robust humoral and cellular immune responses; moreover, Ad-PD-tPA-Sopt-vaccinated mice after two IM injections with 108 infectious units (IFU)/mouse had significantly higher anti-PDCoV-specific neutralizing antibody titers. In contrast, the mice immunized with Ad-PD-tPA-Sopt via oral gavage (OG) did not generate robust systemic and mucosal immunity. Thus, IM Ad-PD-tPA-Sopt administration is a promising strategy against PDCoV and provides useful information for future animal vaccine development.
Journal Article
Restriction-Assembly: A Solution to Construct Novel Adenovirus Vector
by
Tan, Wenjie
,
Guo, Xiaojuan
,
Sun, Yangyang
in
Adenoviridae - genetics
,
adenovirus
,
Adenoviruses
2022
Gene therapy and vaccine development need more novel adenovirus vectors. Here, we attempt to provide strategies to construct adenovirus vectors based on restriction-assembly for researchers with little experience in this field. Restriction-assembly is a combined method of restriction digestion and Gibson assembly, by which the major part of the obtained plasmid comes from digested DNA fragments instead of PCR products. We demonstrated the capability of restriction-assembly in manipulating the genome of simian adenovirus 1 (SAdV-1) in this study. A PCR product of the plasmid backbone was combined with SAdV-1 genomic DNA to construct an infectious clone, plasmid pKSAV1, by Gibson assembly. Restriction-assembly was performed repeatedly in the steps of intermediate plasmid isolation, modification, and restoration. The generated adenoviral plasmid was linearized by restriction enzyme digestion and transfected into packaging 293 cells to rescue E3-deleted replication-competent SAdV1XE3-CGA virus. Interestingly, SAdV1XE3-CGA could propagate in human chronic myelogenous leukemia K562 cells. The E1 region was similarly modified to generate E1/E3-deleted replication-defective virus SAdV1-EG. SAdV1-EG had a moderate gene transfer ability to adherent mammalian cells, and it could efficiently transduce suspension cells when compared with the human adenovirus 5 control vector. Restriction-assembly is easy to use and can be performed without special experimental materials and instruments. It is highly effective with verifiable outcomes at each step. More importantly, restriction-assembly makes the established vector system modifiable, upgradable and under sustainable development, and it can serve as the instructive method or strategy for the synthetic biology of adenoviruses.
Journal Article
The Biodistribution of Replication-Defective Simian Adenovirus 1 Vector in a Mouse Model
by
Sprindzuk, Matvey V.
,
Guo, Xiaojuan
,
Yang, Chunlei
in
adenovirus
,
Adenoviruses
,
Adenoviruses, Simian - genetics
2024
The administration route affects the biodistribution of a gene transfer vector and the expression of a transgene. A simian adenovirus 1 vector carrying firefly luciferase and GFP reporter genes (SAdV1-GFluc) were constructed, and its biodistribution was investigated in a mouse model by bioluminescence imaging and virus DNA tracking with real-time PCR. Luciferase activity and virus DNA were mainly found in the liver and spleen after the intravenous administration of SAdV1-GFluc. The results of flow cytometry illustrated that macrophages in the liver and spleen as well as hepatocytes were the target cells. Repeated inoculation was noneffective because of the stimulated serum neutralizing antibodies (NAbs) against SAdV-1. A transient, local expression of low-level luciferase was detected after intragastric administration, and the administration could be repeated without compromising the expression of the reporter gene. Intranasal administration led to a moderate, constant expression of a transgene in the whole respiratory tract and could be repeated one more time without a significant increase in the NAb titer. An immunohistochemistry assay showed that respiratory epithelial cells and macrophages in the lungs were transduced. High luciferase activity was restricted at the injection site and sustained for a week after intramuscular administration. A compromised transgene expression was observed after a repeated injection. When these mice were intramuscularly injected for a third time with the human adenovirus 5 (HAdV-5) vector carrying a luciferase gene, the luciferase activity recovered and reached the initial level, suggesting that the sequential use of SAdV-1 and HAdV-5 vectors was practicable. In short, the intranasal inoculation or intramuscular injection may be the preferred administration routes for the novel SAdV-1 vector in vaccine development.
Journal Article
Immunostimulatory Profile of Cancer Cell Death by the AdV-Lumc007-Derived Oncolytic Virus ‘GoraVir’ in Cultured Pancreatic Cancer Cells
by
Hoeben, Rob C.
,
Rabelink, Martijn J. W. E.
,
van den Wollenberg, Diana J. M.
in
Adenocarcinoma
,
Adenoviridae - genetics
,
Adenoviruses
2023
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy which shows unparalleled therapeutic resistance. Oncolytic viruses have emerged as a new treatment approach and convey their antitumor activity through lysis of cancer cells. The therapeutic efficacy of oncolytic viruses is largely dependent on the induction of immunogenic cell death (ICD) and the subsequent antitumor immune responses. However, the concurrent generation of antiviral immune responses may also limit the a virus’ therapeutic window. GoraVir is a new oncolytic adenovirus derived from the Human Adenovirus B (HAdV-B) isolate AdV-lumc007 which was isolated from a gorilla and has demonstrated excellent lytic activity in both in vitro and in vivo models of PDAC. In this study, we characterized the immunostimulatory profile of cancer cell death induced by GoraVir and the concerted cellular antiviral responses in three conventional pancreatic cancer cell lines. While GoraVir was shown to induce late apoptotic/necrotic cell death at earlier time points post infection than the human adenovirus type 5 (HAdV-C5), similar levels of ICD markers were expressed. Moreover, GoraVir was shown to induce ICD not dependent on STING expression and regardless of subsequent antiviral responses. Together, these data demonstrate that GoraVir is an excellent candidate for use in oncolytic virotherapy.
Journal Article
Genetic Diversity of the Human Adenovirus C Isolated from Hospitalized Children in Russia (2019–2022)
by
Shestopalov, Alexander M.
,
Derko, Anastasiya A.
,
Anoshina, Angelika V.
in
Adenovirus Infections, Human - epidemiology
,
adenovirus typing
,
Adenoviruses
2024
The human adenovirus (HAdV) is a common pathogen in children that can cause acute respiratory virus infection (ARVI). However, the molecular epidemiological and clinical information relating to HAdV among hospitalized children with ARVI is rarely reported in Russia. A 4-year longitudinal (2019–2022) study among hospitalized children (0–17 years old) with ARVI in Novosibirsk, Russia, was conducted to evaluate the epidemiological and molecular characteristics of HAdV. Statistically significant differences in the detection rates of epidemiological and virological data of all positive viral detections of HAdV were analyzed using a two-tailed Chi-square test. The incidence of HAdV and other respiratory viruses such as human influenza A and B viruses, respiratory syncytial virus, coronavirus, parainfluenza virus, metapneumovirus, rhinovirus, bocavirus, and SARS-CoV-2 was investigated among 3190 hospitalized children using real-time polymerase chain reaction. At least one of these respiratory viruses was detected in 74.4% of hospitalized cases, among which HAdV accounted for 4%. A total of 1.3% co-infections with HAdV were also registered. We obtained full-genome sequences of 12 HAdVs, which were isolated in cell cultures. Genetic analysis revealed the circulation of adenovirus of genotypes C1, C2, C5, C89, and 108 among hospitalized children in the period from 2019–2022.
Journal Article
Inactivation mechanisms of human adenovirus by e-beam irradiation in water environments
by
Caeiro, Maria Filomena
,
Roque, Joana
,
Margaça, Fernanda M. A.
in
Adenoviruses
,
Amplification
,
Analysis
2022
This study aims to study the kinetics and mechanisms of human adenovirus inactivation by electron beam. Human adenovirus type 5 (HAdV-5) was inoculated in two types of aqueous substrates (phosphate-buffered saline — PBS, domestic wastewater — WW) treated by electron beam at a dose range between 3 and 21 kGy. Samples were evaluated for virus infectivity, PCR amplification of fragments of HAdV-5 genome and abundance and antigenicity of the virion structural proteins. The maximum reduction in viral titre, in plaque-forming units (PFU) per millilitre, was about 7 and 5 log PFU/mL for e-beam irradiation at 20 kGy in PBS and 19 kGy in wastewater, respectively. Among the virion structural proteins detected, the hexon protein showed the higher radioresistance. Long (10.1 kbp) genomic DNA fragments were differently PCR amplified, denoting a substrate effect on HAdV-5 genome degradation by e-beam. The differences observed between the two substrates can be explained by the protective effect that the organic matter present in the substrate may have on viral irradiation. According to the obtained results, the decrease in viral viability/infectivity may be due to DNA damage and to protein alterations. In summary, electron beam irradiation at a dose of 13 kGy is capable of reducing HAdV-5 viral titres by more than 99.99% (4 log PFU/mL) in both substrates assayed, indicating that this type of technology is effective for viral wastewater disinfection and may be used as a tertiary treatment in water treatment plants.
Key Points
• The substrate in which the virus is suspended has an impact on its sensitivity to e-beam treatment.
• E-beam irradiation at 13 kGy is capable of reducing by 4 Log PFU/mL the HAdV-5 viral titre.
• The decrease in viral viability/infectivity may be due to DNA damage and to protein alterations.
Journal Article
Langerin negative dendritic cells promote potent CD8⁺ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays
by
Carlin, Leo M.
,
Benlahrech, Adel
,
Bachy, Veronique
in
Adenoviridae - genetics
,
Adenoviridae - immunology
,
Antigens, CD - physiology
2013
Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8 ⁺ T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c ⁺ dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c ⁺ MHCII ʰⁱ CD8α ⁿᵉᵍ epithelial cell adhesion molecule (EpCAM ⁿᵉᵍ) CD11b ⁺ langerin (Lang; CD207) ⁿᵉᵍ DCs, but neither Langerhans cells nor Lang ⁺ DCs were required for CD8 ⁺ T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8 ⁺ T-cell priming by live rAdHu5 MAs.
Journal Article