Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
574
result(s) for
"Hydrogenase - genetics"
Sort by:
Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival
2016
Recent physiological and ecological studies have challenged the long-held belief that microbial metabolism of molecular hydrogen (H
2
) is a niche process. To gain a broader insight into the importance of microbial H
2
metabolism, we comprehensively surveyed the genomic and metagenomic distribution of hydrogenases, the reversible enzymes that catalyse the oxidation and evolution of H
2
. The protein sequences of 3286 non-redundant putative hydrogenases were curated from publicly available databases. These metalloenzymes were classified into multiple groups based on (1) amino acid sequence phylogeny, (2) metal-binding motifs, (3) predicted genetic organisation and (4) reported biochemical characteristics. Four groups (22 subgroups) of [NiFe]-hydrogenase, three groups (6 subtypes) of [FeFe]-hydrogenases and a small group of [Fe]-hydrogenases were identified. We predict that this hydrogenase diversity supports H
2
-based respiration, fermentation and carbon fixation processes in both oxic and anoxic environments, in addition to various H
2
-sensing, electron-bifurcation and energy-conversion mechanisms. Hydrogenase-encoding genes were identified in 51 bacterial and archaeal phyla, suggesting strong pressure for both vertical and lateral acquisition. Furthermore, hydrogenase genes could be recovered from diverse terrestrial, aquatic and host-associated metagenomes in varying proportions, indicating a broad ecological distribution and utilisation. Oxygen content (
p
O
2
) appears to be a central factor driving the phylum- and ecosystem-level distribution of these genes. In addition to compounding evidence that H
2
was the first electron donor for life, our analysis suggests that the great diversification of hydrogenases has enabled H
2
metabolism to sustain the growth or survival of microorganisms in a wide range of ecosystems to the present day. This work also provides a comprehensive expanded system for classifying hydrogenases and identifies new prospects for investigating H
2
metabolism.
Journal Article
Diverse hydrogen production and consumption pathways influence methane production in ruminants
by
Leahy, Sinead C.
,
Cook, Gregory M.
,
Morales, Sergio E.
in
38/39
,
631/326/2565/2142
,
631/45/500
2019
Farmed ruminants are the largest source of anthropogenic methane emissions globally. The methanogenic archaea responsible for these emissions use molecular hydrogen (H
2
), produced during bacterial and eukaryotic carbohydrate fermentation, as their primary energy source. In this work, we used comparative genomic, metatranscriptomic and co-culture-based approaches to gain a system-wide understanding of the organisms and pathways responsible for ruminal H
2
metabolism. Two-thirds of sequenced rumen bacterial and archaeal genomes encode enzymes that catalyse H
2
production or consumption, including 26 distinct hydrogenase subgroups. Metatranscriptomic analysis confirmed that these hydrogenases are differentially expressed in sheep rumen. Electron-bifurcating [FeFe]-hydrogenases from carbohydrate-fermenting Clostridia (e.g.,
Ruminococcus
) accounted for half of all hydrogenase transcripts. Various H
2
uptake pathways were also expressed, including methanogenesis (
Methanobrevibacter
), fumarate and nitrite reduction (
Selenomonas
), and acetogenesis (
Blautia
). Whereas methanogenesis-related transcripts predominated in high methane yield sheep, alternative uptake pathways were significantly upregulated in low methane yield sheep. Complementing these findings, we observed significant differential expression and activity of the hydrogenases of the hydrogenogenic cellulose fermenter
Ruminococcus albus
and the hydrogenotrophic fumarate reducer
Wolinella succinogenes
in co-culture compared with pure culture. We conclude that H
2
metabolism is a more complex and widespread trait among rumen microorganisms than previously recognised. There is evidence that alternative hydrogenotrophs, including acetogenic and respiratory bacteria, can prosper in the rumen and effectively compete with methanogens for H
2
. These findings may help to inform ongoing strategies to mitigate methane emissions by increasing flux through alternative H
2
uptake pathways, including through animal selection, dietary supplementation and methanogenesis inhibitors.
Journal Article
Bacterial formate hydrogenlyase complex
by
Tracy Palmer
,
Bonnie J. Murphy
,
Michael Haumann
in
Anaerobic conditions
,
Biochemical analysis
,
Biochemistry
2014
Significance The isolation of an active formate hydrogenlyase is a breakthrough in understanding the molecular basis of bacterial hydrogen production. For over 100 years, Escherichia coli has been known to evolve H ₂ when cultured under fermentative conditions. Glucose is metabolized to formate, which is then oxidized to CO ₂ with the concomitant reduction of protons to H ₂ by a single complex called formate hydrogenlyase, which had been genetically, but never biochemically, characterized. In this study, innovative molecular biology and electrochemical experiments reveal a hydrogenase enzyme with the unique ability to sustain H ₂ production even under high partial pressures of H ₂. Harnessing bacterial H ₂ production offers the prospect of a source of fully renewable H ₂ energy, freed from any dependence on fossil fuel.
Under anaerobic conditions, Escherichia coli can carry out a mixed-acid fermentation that ultimately produces molecular hydrogen. The enzyme directly responsible for hydrogen production is the membrane-bound formate hydrogenlyase (FHL) complex, which links formate oxidation to proton reduction and has evolutionary links to Complex I, the NADH:quinone oxidoreductase. Although the genetics, maturation, and some biochemistry of FHL are understood, the protein complex has never been isolated in an intact form to allow biochemical analysis. In this work, genetic tools are reported that allow the facile isolation of FHL in a single chromatographic step. The core complex is shown to comprise HycE (a [NiFe] hydrogenase component termed Hyd-3), FdhF (the molybdenum-dependent formate dehydrogenase-H), and three iron-sulfur proteins: HycB, HycF, and HycG. A proportion of this core complex remains associated with HycC and HycD, which are polytopic integral membrane proteins believed to anchor the core complex to the cytoplasmic side of the membrane. As isolated, the FHL complex retains formate hydrogenlyase activity in vitro. Protein film electrochemistry experiments on Hyd-3 demonstrate that it has a unique ability among [NiFe] hydrogenases to catalyze production of H ₂ even at high partial pressures of H ₂. Understanding and harnessing the activity of the FHL complex is critical to advancing future biohydrogen research efforts.
Journal Article
Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide
2019
Most aerobic bacteria exist in dormant states within natural environments. In these states, they endure adverse environmental conditions such as nutrient starvation by decreasing metabolic expenditure and using alternative energy sources. In this study, we investigated the energy sources that support persistence of two aerobic thermophilic strains of the environmentally widespread but understudied phylum Chloroflexi. A transcriptome study revealed that
Thermomicrobium roseum
(class Chloroflexia) extensively remodels its respiratory chain upon entry into stationary phase due to nutrient limitation. Whereas primary dehydrogenases associated with heterotrophic respiration were downregulated, putative operons encoding enzymes involved in molecular hydrogen (H
2
), carbon monoxide (CO), and sulfur compound oxidation were significantly upregulated. Gas chromatography and microsensor experiments showed that
T. roseum
aerobically respires H
2
and CO at a range of environmentally relevant concentrations to sub-atmospheric levels. Phylogenetic analysis suggests that the hydrogenases and carbon monoxide dehydrogenases mediating these processes are widely distributed in Chloroflexi genomes and have probably been horizontally acquired on more than one occasion. Consistently, we confirmed that the sporulating isolate
Thermogemmatispora
sp. T81 (class Ktedonobacteria) also oxidises atmospheric H
2
and CO during persistence, though further studies are required to determine if these findings extend to mesophilic strains. This study provides axenic culture evidence that atmospheric CO supports bacterial persistence and reports the third phylum, following Actinobacteria and Acidobacteria, to be experimentally shown to mediate the biogeochemically and ecologically important process of atmospheric H
2
oxidation. This adds to the growing body of evidence that atmospheric trace gases are dependable energy sources for bacterial persistence.
Journal Article
Several ways one goal—methanogenesis from unconventional substrates
2020
Methane is the second most important greenhouse gas on earth. It is produced by methanogenic archaea, which play an important role in the global carbon cycle. Three main methanogenesis pathways are known: in the hydrogenotrophic pathway H2 and carbon dioxide are used for methane production, whereas in the methylotrophic pathway small methylated carbon compounds like methanol and methylated amines are used. In the aceticlastic pathway, acetate is disproportionated to methane and carbon dioxide. However, next to these conventional substrates, further methanogenic substrates and pathways have been discovered. Several phylogenetically distinct methanogenic lineages (Methanosphaera, Methanimicrococcus, Methanomassiliicoccus, Methanonatronarchaeum) have evolved hydrogen-dependent methylotrophic methanogenesis without the ability to perform either hydrogenotrophic or methylotrophic methanogenesis. Genome analysis of the deep branching Methanonatronarchaeum revealed an interesting membrane-bound hydrogenase complex affiliated with the hardly described class 4 g of multisubunit hydrogenases possibly providing reducing equivalents for anabolism. Furthermore, methylated sulfur compounds such as methanethiol, dimethyl sulfide, and methylmercaptopropionate were described to be converted into adapted methylotrophic methanogenesis pathways of Methanosarcinales strains. Moreover, recently it has been shown that the methanogen Methermicoccus shengliensis can use methoxylated aromatic compounds in methanogenesis. Also, tertiary amines like choline (N,N,N-trimethylethanolamine) or betaine (N,N,N-trimethylglycine) have been described as substrates for methane production in Methanococcoides and Methanolobus strains. This review article will provide in-depth information on genome-guided metabolic reconstructions, physiology, and biochemistry of these unusual methanogenesis pathways.Key points• Newly discovered methanogenic substrates and pathways are reviewed for the first time.• The review provides an in-depth analysis of unusual methanogenesis pathways.• The hydrogenase complex of the deep branching Methanonatronarchaeum is analyzed.
Journal Article
Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla
by
Castelle, Cindy J.
,
Sharon, Itai
,
VerBerkmoes, Nathan C.
in
Acetates
,
Adenosine triphosphate
,
Amino Acid Sequence
2012
BD1-5, OP11, and OD1 bacteria have been widely detected in anaerobic environments, but their metabolisms remain unclear owing to lack of cultivated representatives and minimal genomic sampling. We uncovered metabolic characteristics for members of these phyla, and a new lineage, PER, via cultivation-independent recovery of 49 partial to near-complete genomes from an acetate-amended aquifer. All organisms were nonrespiring anaerobes predicted to ferment. Three augment fermentation with archaeal-like hybrid type ll/lll ribulose-l, 5-bisphosphate carboxylase-oxygenase (RuBisCO) that couples adenosine monophosphate salvage with CO₂ fixation, a pathway not previously described in Bacteria. Members of OD1 reduce sulfur and may pump protons using archaeal-type hydrogenases. For six organisms, the UGA stop codon is translated as tryptophan. All bacteria studied here may play previously unrecognized roles in hydrogen production, sulfur cycling, and fermentation of refractory sedimentary carbon.
Journal Article
Hydrogen production in microbial electrolysis cells with biocathodes
by
Noori, Md Tabish
,
Rossi, Ruggero
,
Logan, Bruce E.
in
Bacteria
,
Bacteria - genetics
,
Bacteria - metabolism
2024
Efficient hydrogen production in biocathode-driven microbial electrolysis cells (MECs) can be obtained by electroautotrophic microbes with the ability to regenerate biocatalytic activity.Inoculation and enrichment of a pure defined culture in the cathode are critical for high performance in hydrogen production.Zero-gap MECs with anion exchange membranes (AEMs) enhance hydrogen production due to low internal resistance and better pH balance.Engineered microbes and optimized microbe–electrode interactions can further increase MEC performance and accelerate its commercialization.
Electroautotrophic microbes at biocathodes in microbial electrolysis cells (MECs) can catalyze the hydrogen evolution reaction with low energy demand, facilitating long-term stable performance through specific and renewable biocatalysts. However, MECs have not yet reached commercialization due to a lack of understanding of the optimal microbial strains and reactor configurations for achieving high performance. Here, we critically analyze the criteria for the inocula selection, with a focus on the effect of hydrogenase activity and microbe–electrode interactions. We also evaluate the impact of the reactor design and key parameters, such as membrane type, composition, and electrode surface area on internal resistance, mass transport, and pH imbalances within MECs. This analysis paves the way for advancements that could propel biocathode-assisted MECs toward scalable hydrogen gas production.
Electroautotrophic microbes at biocathodes in microbial electrolysis cells (MECs) can catalyze the hydrogen evolution reaction with low energy demand, facilitating long-term stable performance through specific and renewable biocatalysts. However, MECs have not yet reached commercialization due to a lack of understanding of the optimal microbial strains and reactor configurations for achieving high performance. Here, we critically analyze the criteria for the inocula selection, with a focus on the effect of hydrogenase activity and microbe–electrode interactions. We also evaluate the impact of the reactor design and key parameters, such as membrane type, composition, and electrode surface area on internal resistance, mass transport, and pH imbalances within MECs. This analysis paves the way for advancements that could propel biocathode-assisted MECs toward scalable hydrogen gas production.
Journal Article
Advances and challenges in photosynthetic hydrogen production
2022
The vision to replace coal with hydrogen goes back to Jules Verne in 1874. However, sustainable hydrogen production remains challenging. The most elegant approach is to utilize photosynthesis for water splitting and to subsequently save solar energy as hydrogen. Cyanobacteria and green algae are unicellular photosynthetic organisms that contain hydrogenases and thereby possess the enzymatic equipment for photosynthetic hydrogen production. These features of cyanobacteria and algae have inspired artificial and semi-artificial in vitro techniques, that connect photoexcited materials or enzymes with hydrogenases or mimics of these for hydrogen production. These in vitro methods have on their part been models for the fusion of cyanobacterial and algal hydrogenases to photosynthetic photosystem I (PSI) in vivo, which recently succeeded as proofs of principle.
Biotechnological solar hydrogen production has the aim to utilize electrons from the light reactions of photosynthesis. Recently, cyanobacterial and algal H2ases, the enzymes that catalyze production of H2, were successfully fused to PSI. They intercept electrons from the photosynthetic electron transport chain.Both engineered strains produce photosynthetic hydrogen for prolonged periods. They maintained their ability to grow photoautotrophically.The processes do not exclusively rely upon water oxidation as desired, which is mostly due to the fact that the H2ases are sensitive to oxygen.
Journal Article
The roles of long-range proton-coupled electron transfer in the directionality and efficiency of FeFe-hydrogenases
by
Winkler, Martin
,
Duan, Jifu
,
Armstrong, Fraser A.
in
Benchmarks
,
Biochemistry
,
Biological Sciences
2020
As paradigms for proton-coupled electron transfer in enzymes and benchmarks for a fully renewable H₂ technology, [FeFe]-hydrogenases behave as highly reversible electrocatalysts when immobilized on an electrode, operating in both catalytic directions with minimal overpotential requirement. Using the [FeFe]-hydrogenases from Clostridium pasteurianum (CpI) and Chlamydomonas reinhardtii (CrHydA1) we have conducted site-directed mutagenesis and protein film electrochemistry to determine how efficient catalysis depends on the longrange coupling of electron and proton transfer steps. Importantly, the electron and proton transfer pathways in [FeFe]-hydrogenases are well separated from each other in space. Variants with conservative substitutions (glutamate to aspartate) in either of two positions in the proton-transfer pathway retain significant activity and reveal the consequences of slowing down proton transfer for both catalytic directions over a wide range of pH and potential values. Proton reduction in the variants is impaired mainly by limiting the turnover rate, which drops sharply as the pH is raised, showing that proton capture from bulk solvent becomes critical. In contrast, hydrogen oxidation is affected in two ways: by limiting the turnover rate and by a large overpotential requirement that increases as the pH is raised, consistent with the accumulation of a reduced and protonated intermediate. A unique observation having fundamental significance is made under conditions where the variants still retain sufficient catalytic activity in both directions: An inflection appears as the catalytic current switches direction at the 2H⁺/H₂ thermodynamic potential, clearly signaling a departure from electrocatalytic reversibility as electron and proton transfers begin to be decoupled.
Journal Article
Comparative genomic analysis reveals metabolic flexibility of Woesearchaeota
2021
The archaeal phylum Woesearchaeota, within the DPANN superphylum, includes phylogenetically diverse microorganisms that inhabit various environments. Their biology is poorly understood due to the lack of cultured isolates. Here, we analyze datasets of Woesearchaeota 16S rRNA gene sequences and metagenome-assembled genomes to infer global distribution patterns, ecological preferences and metabolic capabilities. Phylogenomic analyses indicate that the phylum can be classified into ten subgroups, termed A–J. While a symbiotic lifestyle is predicted for most, some members of subgroup J might be host-independent. The genomes of several Woesearchaeota, including subgroup J, encode putative [FeFe] hydrogenases (known to be important for fermentation in other organisms), suggesting that these archaea might be anaerobic fermentative heterotrophs.
The biology of the archaeal phylum Woesearchaeota is poorly understood due to the lack of cultured isolates. Here, the authors analyze datasets of Woesearchaeota 16 S rRNA gene sequences and metagenome-assembled genomes to infer global distribution patterns, ecological preferences and metabolic capabilities.
Journal Article