Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
3,090
result(s) for
"Hyperbolic systems"
Sort by:
Spectral Properties of Ruelle Transfer Operators for Regular Gibbs Measures and Decay of Correlations for Contact Anosov Flows
2023
In this work we study strong spectral properties of Ruelle transfer operators related to a large family of Gibbs measures for contact
Anosov flows. The ultimate aim is to establish exponential decay of correlations for Hölder observables with respect to a very general
class of Gibbs measures. The approach invented in 1997 by Dolgopyat in “On decay of correlations in Anosov flows” and further developed
in Stoyanov (2011) is substantially refined here, allowing to deal with much more general situations than before, although we still
restrict ourselves to the uniformly hyperbolic case. A rather general procedure is established which produces the desired estimates
whenever the Gibbs measure admits a Pesin set with exponentially small tails, that is a Pesin set whose preimages along the flow have
measures decaying exponentially fast. We call such Gibbs measures regular. Recent results in Gouëzel and Stoyanov (2019) prove existence
of such Pesin sets for hyperbolic diffeomorphisms and flows for a large variety of Gibbs measures determined by Hölder continuous
potentials. The strong spectral estimates for Ruelle operators and well-established techniques lead to exponential decay of correlations
for Hölder continuous observables, as well as to some other consequences such as: (a) existence of a non-zero analytic continuation of
the Ruelle zeta function with a pole at the entropy in a vertical strip containing the entropy in its interior; (b) a Prime Orbit
Theorem with an exponentially small error.
Geometric pressure for multimodal maps of the interval
by
Przytycki, Feliks
,
Rivera-Letelier, Juan
in
Conformal geometry
,
Mappings (Mathematics)
,
Riemann surfaces
2019
This paper is an interval dynamics counterpart of three theories founded earlier by the authors, S. Smirnov and others in the setting
of the iteration of rational maps on the Riemann sphere: the equivalence of several notions of non-uniform hyperbolicity, Geometric
Pressure, and Nice Inducing Schemes methods leading to results in thermodynamical formalism. We work in a setting of generalized
multimodal maps, that is smooth maps
Eigenfunctions of Transfer Operators and Automorphic Forms for Hecke Triangle Groups of Infinite Covolume
We develop cohomological interpretations for several types of automorphic forms for Hecke triangle groups of infinite covolume. We
then use these interpretations to establish explicit isomorphisms between spaces of automorphic forms, cohomology spaces and spaces of
eigenfunctions of transfer operators. These results show a deep relation between spectral entities of Hecke surfaces of infinite volume
and the dynamics of their geodesic flows.
The Regularity of the Linear Drift in Negatively Curved Spaces
by
Shu, Lin
,
Ledrappier, François
in
Brownian motion processes
,
Curves, Algebraic
,
Geodesic flows
2023
We show that the linear drift of the Brownian motion on the universal cover of a closed connected smooth Riemannian manifold is
Global Well-Posedness of High Dimensional Maxwell–Dirac for Small Critical Data
by
Gavrus, Cristian
,
Oh, Sung-Jin
in
Differential equations, Partial
,
Dirac equation
,
Equations of mathematical physics and other areas of application [See also 35J05, 35J10, 35K05, 35L05]
2020
In this paper, the authors prove global well-posedness of the massless Maxwell-Dirac equation in the Coulomb gauge on \\mathbb{R}^{1+d} (d\\geq 4) for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncovering null structure of Maxwell-Dirac in the Coulomb gauge, and B) proving solvability of the underlying covariant Dirac equation. A key step for achieving both is to exploit (and justify) a deep analogy between Maxwell-Dirac and Maxwell-Klein-Gordon (for which an analogous result was proved earlier by Krieger-Sterbenz-Tataru, which says that the most difficult part of Maxwell-Dirac takes essentially the same form as Maxwell-Klein-Gordon.
Free Energy and Equilibrium States for Families of Interval Maps
2023
We study continuity, and lack thereof, of thermodynamical properties for one-dimensional dynamical systems. Under quite general
hypotheses, the free energy is shown to be almost upper-semicontinuous: some normalised component of a limit measure will have free
energy at least that of the limit of the free energies. From this, we deduce results concerning existence and continuity of equilibrium
states (including statistical stability). Metric entropy, not semicontinuous as a general multimodal map varies, is shown to be upper
semicontinuous under an appropriate hypothesis on critical orbits. Equilibrium states vary continuously, under mild hypotheses, as one
varies the parameter and the map. We give a general method for constructing induced maps which automatically give strong exponential
tail estimates. This also allows us to recover, and further generalise, recent results concerning statistical properties (decay of
correlations, etc.). Counterexamples to statistical stability are given which also show sharpness of the main results.
Tunneling estimates and approximate controllability for hypoelliptic equations
by
Laurent, Camille
,
Léautaud, Matthieu
in
Differential equations, Hypoelliptic
,
Partial differential equations -- Close-to-elliptic equations and systems -- Hypoelliptic equations. msc
,
Partial differential equations -- Hyperbolic equations and systems -- Wave equation. msc
2022
This memoir is concerned with quantitative unique continuation estimates for equations involving a “sum of squares” operator
The first result is the tunneling estimate
The main
result is a stability estimate for solutions to the hypoelliptic wave equation
We then prove the approximate controllability of the
hypoelliptic heat equation
We also explain how the analyticity
assumption can be relaxed, and a boundary
Most results turn out to be optimal on a family of Grushin-type operators.
The main proof relies on the
general strategy to produce quantitative unique continuation estimates, developed by the authors in Laurent-Léautaud (2019).
Type II Blow Up Solutions with Optimal Stability Properties for the Critical Focussing Nonlinear Wave Equation on ℝ
by
Krieger, Joachim
,
Burzio, Stefano
in
Asymptotic expansions
,
Blowing up (Algebraic geometry)
,
Fourier transformations
2022
We show that the finite time type II blow up solutions for the energy critical nonlinear wave equation
New Low-Dissipation Central-Upwind Schemes
by
Kurganov, Alexander
,
Xin, Ruixiao
in
Algorithms
,
Computational Mathematics and Numerical Analysis
,
Conservation laws
2023
In this paper, we develop new second-order low-dissipation central-upwind (LDCU) schemes for hyperbolic systems of conservation laws. Like all of the Godunov-type schemes, the proposed LDCU schemes are developed in three steps: reconstruction, evolution, and projection. A major novelty of our approach is in the projection step, which is based on a subcell resolution and designed to sharper approximate contact waves while ensuring a non-oscillatory property of the projected solution. In order to achieve this goal, we take into account properties of the contact waves. We design the LDCU schemes for both the one- and two-dimensional Euler equations of gas dynamics. The new schemes are tested on a variety of numerical examples. The obtained results clearly demonstrate that the proposed LDCU schemes contain substantially smaller amount of numerical dissipation and achieve higher resolution compared with their existing counterparts.
Journal Article