MbrlCatalogueTitleDetail

Do you wish to reserve the book?
New Low-Dissipation Central-Upwind Schemes
New Low-Dissipation Central-Upwind Schemes
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
New Low-Dissipation Central-Upwind Schemes
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
New Low-Dissipation Central-Upwind Schemes
New Low-Dissipation Central-Upwind Schemes

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
New Low-Dissipation Central-Upwind Schemes
New Low-Dissipation Central-Upwind Schemes
Journal Article

New Low-Dissipation Central-Upwind Schemes

2023
Request Book From Autostore and Choose the Collection Method
Overview
In this paper, we develop new second-order low-dissipation central-upwind (LDCU) schemes for hyperbolic systems of conservation laws. Like all of the Godunov-type schemes, the proposed LDCU schemes are developed in three steps: reconstruction, evolution, and projection. A major novelty of our approach is in the projection step, which is based on a subcell resolution and designed to sharper approximate contact waves while ensuring a non-oscillatory property of the projected solution. In order to achieve this goal, we take into account properties of the contact waves. We design the LDCU schemes for both the one- and two-dimensional Euler equations of gas dynamics. The new schemes are tested on a variety of numerical examples. The obtained results clearly demonstrate that the proposed LDCU schemes contain substantially smaller amount of numerical dissipation and achieve higher resolution compared with their existing counterparts.