Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
45,413 result(s) for "INSECT DISEASES"
Sort by:
A review of advanced machine learning methods for the detection of biotic stress in precision crop protection
Effective crop protection requires early and accurate detection of biotic stress. In recent years, remarkable results have been achieved in the early detection of weeds, plant diseases and insect pests in crops. These achievements are related both to the development of non-invasive, high resolution optical sensors and data analysis methods that are able to cope with the resolution, size and complexity of the signals from these sensors. Several methods of machine learning have been utilized for precision agriculture such as support vector machines and neural networks for classification (supervised learning); k-means and self-organizing maps for clustering (unsupervised learning). These methods are able to calculate both linear and non-linear models, require few statistical assumptions and adapt flexibly to a wide range of data characteristics. Successful applications include the early detection of plant diseases based on spectral features and weed detection based on shape descriptors with supervised or unsupervised learning methods. This review gives a short introduction into machine learning, analyses its potential for precision crop protection and provides an overview of instructive examples from different fields of precision agriculture.
Bugs in Bugs: The Role of Probiotics and Prebiotics in Maintenance of Health in Mass-Reared Insects
Interactions between insects and their microbiota affect insect behaviour and evolution. When specific microorganisms are provided as a dietary supplement, insect reproduction, food conversion and growth are enhanced and health is improved in cases of nutritional deficiency or pathogen infection. The purpose of this review is to provide an overview of insect–microbiota inter-actions, to review the role of probiotics, their general use in insects reared for food and feed, and their interactions with the host microbiota. We review how bacterial strains have been selected for insect species reared for food and feed and discuss methods used to isolate and measure the effectiveness of a probiotic. We outline future perspectives on probiotic applications in mass-reared insects.
Leishmania, microbiota and sand fly immunity
In this review, we explore the state-of-the-art of sand fly relationships with microbiota, viruses and Leishmania, with particular emphasis on the vector immune responses. Insect-borne diseases are a major public health problem in the world. Phlebotomine sand flies are proven vectors of several aetiological agents including viruses, bacteria and the trypanosomatid Leishmania, which are responsible for diseases such as viral encephalitis, bartonellosis and leishmaniasis, respectively. All metazoans in nature coexist intimately with a community of commensal microorganisms known as microbiota. The microbiota has a fundamental role in the induction, maturation and function of the host immune system, which can modulate host protection from pathogens and infectious diseases. We briefly review viruses of public health importance present in sand flies and revisit studies done on bacterial and fungal gut contents of these vectors. We bring this information into the context of sand fly development and immune responses. We highlight the immunity mechanisms that the insect utilizes to survive the potential threats involved in these interactions and discuss the recently discovered complex interactions among microbiota, sand fly, Leishmania and virus. Additionally, some of the alternative control strategies that could benefit from the current knowledge are considered.
RNA Interference Directs Innate Immunity Against Viruses in Adult Drosophila
Innate immunity against bacterial and fungal pathogens is mediated by Toll and immune deficiency (Imd) pathways, but little is known about the antiviral response in DROSOPHILA: Here, we demonstrate that an RNA interference pathway protects adult flies from infection by two evolutionarily diverse viruses. Our work also describes a molecular framework for the viral immunity, in which viral double-stranded RNA produced during infection acts as the pathogen trigger whereas Drosophila Dicer-2 and Argonaute-2 act as host sensor and effector, respectively. These findings establish a Drosophila model for studying the innate immunity against viruses in animals.
Forest Health in a Changing World
Forest pathology, the science of forest health and tree diseases, is operating in a rapidly developing environment. Most importantly, global trade and climate change are increasing the threat to forest ecosystems posed by new diseases. Various studies relevant to forest pathology in a changing world are accumulating, thus making it necessary to provide an update of recent literature. In this contribution, we summarize research at the interface between forest pathology and landscape ecology, biogeography, global change science and research on tree endophytes. Regional outbreaks of tree diseases are requiring interdisciplinary collaboration, e.g. between forest pathologists and landscape ecologists. When tree pathogens are widely distributed, the factors determining their broad-scale distribution can be studied using a biogeographic approach. Global change, the combination of climate and land use change, increased pollution, trade and urbanization, as well as invasive species, will influence the effects of forest disturbances such as wildfires, droughts, storms, diseases and insect outbreaks, thus affecting the health and resilience of forest ecosystems worldwide. Tree endophytes can contribute to biological control of infectious diseases, enhance tolerance to environmental stress or behave as opportunistic weak pathogens potentially competing with more harmful ones. New molecular techniques are available for studying the complete tree endobiome under the influence of global change stressors from the landscape to the intercontinental level. Given that exotic tree diseases have both ecological and economic consequences, we call for increased interdisciplinary collaboration in the coming decades between forest pathologists and researchers studying endophytes with tree geneticists, evolutionary and landscape ecologists, biogeographers, conservation biologists and global change scientists and outline interdisciplinary research gaps.
impact of global warming on plant diseases and insect vectors in Sweden
Cold winters and geographic isolation have hitherto protected the Nordic countries from many plant pathogens and insect pests, leading to a comparatively low input of pesticides. The changing climate is projected to lead to a greater rise in temperature in this region, compared to the global mean. In Scandinavia, a milder and more humid climate implies extended growing seasons and possibilities to introduce new crops, but also opportunities for crop pests and pathogens to thrive in the absence of long cold periods. Increased temperatures, changed precipitation patterns and new cultivation practices may lead to a dramatic change in crop health. Examples of diseases and insect pest problems predicted to increase in incidence and severity due to global warming are discussed.
Insect Molecular Virology
The volume opens with a description of the insect virome and the explosion in discovery of new viral taxa. The following four chapters focus on anti-viral immunity including endogenous viral elements some of which may provide the molecular basis for long-term anti-viral immunity, the discovery of new viral suppressors of RNA interference, the role of new classes of small RNA molecules in dictating infection outcomes, and the Drosophila-dicistrovirus model as a powerful resource for insect molecular virology. The application of omics tools to insect-vectored plant viral disease, recent advances in tetravirus, polydnavirus, and baculovirus research are then described. The final chapters review progress in baculovirus expression vector and surface display technologies for use in laboratory and therapeutic applications. Written by leading experts, this work is essential reading for students and scholars of insect virology and immunology and provides a valuable resource for users of baculovirus-derived tools.
MINIstock: Model for INsect Inclusion in sustainable agriculture: USDA-ARS's research approach to advancing insect meal development and inclusion in animal diets
Animal agriculture is under pressure to increase efficiency, sustainability, and innovation to meet the demands of a rising global population while decreasing adverse environmental effects. Feed cost and availability are 2 of the biggest hurdles to sustainable production. Current diets depend on sources of grain and animal byproduct protein for essential amino acids which have limited sustainability. Insects have arisen as an attractive, sustainable alternative protein source for animal diets due to their favorable nutrient composition, low space and water requirements, and natural role in animal diets. Additionally, insects are capable of bioremediating waste streams including agricultural and food waste, manure, and plastics helping to increase their sustainability. The insect rearing industry has grown rapidly in recent years and shows great economic potential. However, state-of-the-art research is urgently needed to overcome barriers to adoption in commercial animal diets such as regulatory restrictions, production scale issues, and food safety concerns. To address this need, the USDA Agricultural Research Service “MINIstoc: Model for INsect Inclusion” project was created to bring together diverse scientists from across the world to synergistically advance insect meal production and inclusion in animal diets. Here, we provide a short review of insects as feed while describing the MINIstock project which serves as the inspiration for the Journal of Economic Entomology Special Collection “Insects as feed: sustainable solutions for food waste and animal production practices.”
Entomopathogenic nematode-associated microbiota: from monoxenic paradigm to pathobiome
BACKGROUND:The holistic view of bacterial symbiosis, incorporating both host and microbial environment, constitutes a major conceptual shift in studies deciphering host-microbe interactions. Interactions between Steinernema entomopathogenic nematodes and their bacterial symbionts, Xenorhabdus, have long been considered monoxenic two partner associations responsible for the killing of the insects and therefore widely used in insect pest biocontrol. We investigated this \"monoxenic paradigm\" by profiling the microbiota of infective juveniles (IJs), the soil-dwelling form responsible for transmitting Steinernema-Xenorhabdus between insect hosts in the parasitic lifecycle.RESULTS:Multigenic metabarcoding (16S and rpoB markers) showed that the bacterial community associated with laboratory-reared IJs from Steinernema carpocapsae, S. feltiae, S. glaseri and S. weiseri species consisted of several Proteobacteria. The association with Xenorhabdus was never monoxenic. We showed that the laboratory-reared IJs of S. carpocapsae bore a bacterial community composed of the core symbiont (Xenorhabdus nematophila) together with a frequently associated microbiota (FAM) consisting of about a dozen of Proteobacteria (Pseudomonas, Stenotrophomonas, Alcaligenes, Achromobacter, Pseudochrobactrum, Ochrobactrum, Brevundimonas, Deftia, etc.). We validated this set of bacteria by metabarcoding analysis on freshly sampled IJs from natural conditions. We isolated diverse bacterial taxa, validating the profile of the Steinernema FAM. We explored the functions of the FAM members potentially involved in the parasitic lifecycle of Steinernema. Two species, Pseudomonas protegens and P. chlororaphis, displayed entomopathogenic properties suggestive of a role in Steinernema virulence and membership of the Steinernema pathobiome.CONCLUSIONS:Our study validates a shift from monoxenic paradigm to pathobiome view in the case of the Steinernema ecology. The microbial communities of low complexity associated with EPNs will permit future microbiota manipulation experiments to decipher overall microbiota functioning in the infectious process triggered by EPN in insects and, more generally, in EPN ecology.
Cannibalism as a Possible Entry Route for Opportunistic Pathogenic Bacteria to Insect Hosts, Exemplified by Pseudomonas aeruginosa, a Pathogen of the Giant Mealworm Zophobas morio
Opportunistic bacteria are often ubiquitous and do not trigger disease in insects unless the conditions are specifically favorable for bacterial development in a suitable host. In this paper, we isolated and identified a bacterium, Pseudomonas aeruginosa, from the larvae of the giant mealworm Zophobas morio and we studied the possible entry routes by challenging larvae with per os injection and subdermal injection. We also evaluated the effect of exposing groups of larvae to P. aeruginosa inoculated in their feed and the effect of exposing wounded larvae to P. aeruginosa. We concluded that the mortality rate of Z. morio larvae is higher when P. aeruginosa gets in direct contact with the hemolymph via intracoelomic injection compared to a situation where the bacterium is force-fed. Larvae with an open wound exposed to P. aeruginosa presented higher mortality rate compared to larvae with a wound that was not exposed to the bacterium. We documented too, that cannibalism and scavenging were more prevalent among larvae in a group, when P. aeruginosa is present compared to when it is absent. We discuss hereby different aspects related with the pathogen’s entry routes to insects the complexity of pathogen´s transmission in high population densities and different ways to prevent and/or control P. aeruginosa in mass rearing systems.