Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Improved yellow saddle goatfish algorithm"
Sort by:
Multimodal data-based human motion intention prediction using adaptive hybrid deep learning network for movement challenged person
Recently, social demands for a good quality of life have increased among the elderly and disabled people. So, biomedical engineers and robotic researchers aimed to fuse these techniques in a novel rehabilitation system. Moreover, these models utilized the biomedical signals acquired from the human body's particular organ, cells, or tissues. The human motion intention prediction mechanism plays an essential role in various applications, such as assistive and rehabilitation robots, that execute specific tasks among elders and physically impaired individuals. However, more complications are increased in the human–machine-based interaction techniques, creating more scope for personalized assistance for the human motion intention prediction system. Therefore, in this paper, an Adaptive Hybrid Network (AHN) is implemented for effective human motion intention prediction. Initially, multimodal data like electroencephalogram (EEG)/Electromyography (EMG) signals and sensor measures data are collected from the available data resource. The gathered EEG/EMG signals are then converted into spectrogram images and sent to AH-CNN-LSTM, which is the integration of an Adaptive Hybrid Convolution Neural Network (AH-CNN) with a Long Short-Term Memory (LSTM) network. Similarly, the data details of sensor measures are directly subjected to AH-CNN-Res-LSTM, which is the combination of Adaptive Hybrid CNN with Residual Network and LSTM (Res-LSTM) to get the predictive result. Further, to enhance the prediction, the parameters in both the AH-CNN-LSTM and AH-CNN-Res-LSTM techniques are optimized using the Improved Yellow Saddle Goatfish Algorithm (IYSGA). The efficiency of the implemented model is computed by conducting the comparison experiment of the proposed technique with other standard models. The performance outcome of the developed method outperformed the other traditional methods.