MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Multimodal data-based human motion intention prediction using adaptive hybrid deep learning network for movement challenged person
Multimodal data-based human motion intention prediction using adaptive hybrid deep learning network for movement challenged person
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Multimodal data-based human motion intention prediction using adaptive hybrid deep learning network for movement challenged person
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Multimodal data-based human motion intention prediction using adaptive hybrid deep learning network for movement challenged person
Multimodal data-based human motion intention prediction using adaptive hybrid deep learning network for movement challenged person

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Multimodal data-based human motion intention prediction using adaptive hybrid deep learning network for movement challenged person
Multimodal data-based human motion intention prediction using adaptive hybrid deep learning network for movement challenged person
Journal Article

Multimodal data-based human motion intention prediction using adaptive hybrid deep learning network for movement challenged person

2024
Request Book From Autostore and Choose the Collection Method
Overview
Recently, social demands for a good quality of life have increased among the elderly and disabled people. So, biomedical engineers and robotic researchers aimed to fuse these techniques in a novel rehabilitation system. Moreover, these models utilized the biomedical signals acquired from the human body's particular organ, cells, or tissues. The human motion intention prediction mechanism plays an essential role in various applications, such as assistive and rehabilitation robots, that execute specific tasks among elders and physically impaired individuals. However, more complications are increased in the human–machine-based interaction techniques, creating more scope for personalized assistance for the human motion intention prediction system. Therefore, in this paper, an Adaptive Hybrid Network (AHN) is implemented for effective human motion intention prediction. Initially, multimodal data like electroencephalogram (EEG)/Electromyography (EMG) signals and sensor measures data are collected from the available data resource. The gathered EEG/EMG signals are then converted into spectrogram images and sent to AH-CNN-LSTM, which is the integration of an Adaptive Hybrid Convolution Neural Network (AH-CNN) with a Long Short-Term Memory (LSTM) network. Similarly, the data details of sensor measures are directly subjected to AH-CNN-Res-LSTM, which is the combination of Adaptive Hybrid CNN with Residual Network and LSTM (Res-LSTM) to get the predictive result. Further, to enhance the prediction, the parameters in both the AH-CNN-LSTM and AH-CNN-Res-LSTM techniques are optimized using the Improved Yellow Saddle Goatfish Algorithm (IYSGA). The efficiency of the implemented model is computed by conducting the comparison experiment of the proposed technique with other standard models. The performance outcome of the developed method outperformed the other traditional methods.