Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
13,624 result(s) for "Inflammatory Bowel Diseases - metabolism"
Sort by:
Palmitoylethanolamide and Cannabidiol Prevent Inflammation-induced Hyperpermeability of the Human Gut In Vitro and In Vivo-A Randomized, Placebo-controlled, Double-blind Controlled Trial
Abstract Background and aims We aimed to examine, for the first time, the effect of cannabidiol (CBD) and palmitoylethanolamide (PEA) on the permeability of the human gastrointestinal tract in vitro, ex vivo, and in vivo. Methods Flux measurements of fluorescein-labeled dextrans 10 (FD10) and fluorescein-labeled dextrans 4 (FD4) dextran across Caco-2 cultures treated for 24 hours with interferon gamma (IFNγ) and tumour necrosis factor alpha (TNFα) (10 ng·mL−1) were measured, with or without the presence of CBD and PEA. Mechanisms were investigated using cannabinoid receptor 1 (CB1), cannabinoid receptor 2 (CB2), transient receptor potential vanilloid 1 (TRPV1), and proliferator activated receptors (PPAR) antagonists and protein kinase A (PKA), nitric oxide synthase, phosphoinositide 3-kinases, extracellular signal-regulated kinases (MEK/ERK), adenylyl cyclase, and protein kinase C (PKC) inhibitors. Human colonic mucosal samples collected from bowel resections were treated as previously stated. The receptors TRPV1, PPARα, PPARδ, PPARγ, CB1, CB2, G-coupled protein receptor 55 (GPR55), G-coupled protein receptor 119 (GPR119), and claudins-1, -2, -3, -4, -5, -7, and -8 mRNA were measured using multiplex. Aquaporin 3 and 4 were measured using enzyme-linked immunosorbent assay (ELISA). A randomized, double-blind, controlled-trial assessed the effect of PEA or CBD on the absorption of lactulose and mannitol in humans taking 600 mg of aspirin. Urinary concentrations of these sugars were measured using liquid chromatography mass spectrometry. Results In vitro, PEA, and CBD decreased the inflammation-induced flux of dextrans (P < 0.0001), sensitive to PPARα and CB1 antagonism, respectively. Both PEA and CBD were prevented by PKA, MEK/ERK, and adenylyl cyclase inhibition (P < 0.001). In human mucosa, inflammation decreased claudin-5 mRNA, which was prevented by CBD (P < 0.05). Palmitoylethanolamide and cannabidiol prevented an inflammation-induced fall in TRPV1 and increase in PPARα transcription (P < 0.0001). In vivo, aspirin caused an increase in the absorption of lactulose and mannitol, which were reduced by PEA or CBD (P < 0.001). Conclusion Cannabidiol and palmitoylethanolamide reduce permeability in the human colon. These findings have implications in disorders associated with increased gut permeability, such as inflammatory bowel disease.
Self-managed eHealth Disease Monitoring in Children and Adolescents with Inflammatory Bowel Disease: A Randomized Controlled Trial
To evaluate the impact of eHealth on disease activity, the need for hospital contacts, and medical adherence in children and adolescents with inflammatory bowel disease (IBD). Furthermore, to assess eHealth's influence on school attendance and quality of life (QoL).MethodsPatients with IBD, 10 to 17 years attending a public university hospital, were prospectively randomized to a 2-year open label case-controlled eHealth intervention. The eHealth-group used the web-application www.young.constant-care.com (YCC) on a monthly basis and in case of flare-ups, and were seen at one annual preplanned outpatient visit. The control-group continued standard visits every third month. Every 3 months, both groups had blood and fecal calprotectin tested and the following were assessed: escalation in medication, disease activity, hospital contacts, medical adherence, school absence, and QoL.ResultsFifty-three patients in nonbiological treatment were included (27 eHealth/26 control). We found no differences between the groups regarding escalation in treatment and disease activity (symptoms, fecal calprotectin, and blood). The number of total outpatient visits (mean: eHealth 3.26, SEM 0.51; control 7.31, SEM 0.69; P < 0.0001) and IBD-related school absence (mean days: eHealth 1.6, SEM 0.5; control 16.5, SEM 4.4; P < 0.002) was significantly lower in the eHealth-group. No differences in medical adherence and QoL were found. Adherence to YCC was 81% (384 of the 475 expected entries). None of the patients or parents felt unsafe using the eHealth system.ConclusionsThe use of eHealth in children and adolescents with IBD is feasible, does not lead to impaired disease control, and can be managed by the patients without risk of increased disease activity.
Functional food components, intestinal permeability and inflammatory markers in patients with inflammatory bowel disease
Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Pomegranate juice to reduce fecal calprotectin levels in inflammatory bowel disease patients with a high risk of clinical relapse: Study protocol for a randomized controlled trial
Background Inflammatory bowel disease (IBD) is a chronic condition characterized by recurrent episodes of intestinal inflammation and is thought to be related to an autoimmune reaction to genetic and environmental factors. Although evidence indicates that a polyphenolic-rich diet plays an important role in modulating aspects of chronic inflammation, few studies have focused on the effect of ellagitannin (ET)-rich food consumption on long-term remission maintenance in IBD patients with a high risk of clinical relapse. Therefore, we hypothesize that supplementation with a pomegranate juice, a naturally rich source of ETs, could significantly modulate the markers of mucosal and systemic inflammation relative to a control group receiving a placebo. Methods/design This double-blind, randomized controlled trial includes patients with IBD involving the colorectum who have been in stable therapy for at least the three previous months and have a high risk of clinical relapse. Participants are randomly allocated to one of two groups: active supplementation (125 mL of cv. Wonderful pomegranate juice) or placebo (125 mL) taken twice daily for 12 weeks. The primary outcome is changes in the fecal neutrophil-derived protein calprotectin, a surrogate marker of mucosal improvement, between the two groups from baseline to 12 weeks later. The secondary outcomes include transcriptomic changes in peripheral blood mononuclear cells and intestinal biopsies and changes in circulating inflammatory markers and trimethylamine- N -oxide levels. Pomegranate ET-derived metabolites are identified and quantified in plasma and urine samples. Discussion The results will provide information on the possible reduction of fecal calprotectin levels following the consumption of pomegranate juice. The findings will also show the in vivo metabolism of pomegranate ETs. Finally, the effect of 12-week pomegranate juice consumption on local and systemic inflammatory markers will be elucidated, which will likely provide additional insights into the maintenance of remission in IBD patients. Trial registration ClinicalTrials.gov, NCT03000101 . Registered on 21 December 2016.
Mucosal Gene Expression of Cell Adhesion Molecules, Chemokines, and Chemokine Receptors in Patients With Inflammatory Bowel Disease Before and After Infliximab Treatment
Inflammatory bowel disease (IBD) is characterized by a continuous influx of leukocytes into the gut wall. This migration is regulated by cell adhesion molecules (CAMs), and selective antimigration therapies have been developed. This study investigated the effect of infliximab therapy on the mucosal gene expression of CAMs in IBD. Mucosal gene expression of 69 leukocyte/endothelial CAMs and E-cadherin was investigated in 61 IBD patients before and after first infliximab infusion and in 12 normal controls, using Affymetrix gene expression microarrays. Quantitative reverse transcriptase-PCR (qRT-PCR), immunohistochemistry, and western blotting were used to confirm the microarray data. When compared with control colons, the colonic mucosal gene expression of most leukocyte/endothelial adhesion molecules was upregulated and E-cadherin gene expression was downregulated in active colonic IBD (IBDc) before therapy, with no significant colonic gene expression differences between ulcerative colitis and colonic Crohn's disease. Infliximab therapy restored the upregulations of leukocyte CAMs in IBDc responders to infliximab that paralleled the disappearance of the inflammatory cells from the colonic lamina propria. Also, the colonic gene expression of endothelial CAMs and of most chemokines/chemokine receptors returned to normal after therapy in IBDc responders, and only CCL20 and CXCL1-2 expression remained increased after therapy in IBDc responders vs. control colons. When compared with control ileums, the ileal gene expression of MADCAM1, THY1, PECAM1, CCL28, CXCL1, -2, -5, -6, and -11, and IL8 was increased and CD58 expression was decreased in active ileal Crohn's disease (CDi) before therapy, and none of the genes remained dysregulated after therapy in CDi responders vs. control ileums. This microarray study identified a number of interesting targets for antiadhesion therapy including PECAM1, IL8, and CCL20, besides the currently studied α4β7 integrin-MADCAM1 axis. Our data demonstrate that many leukocyte/endothelial CAMs and chemokines/chemokine receptors are upregulated in inflamed IBD mucosa. Controlling the inflammation with infliximab restores most of these dysregulations in IBD. These results show that at least part of the mechanism of anti-tumor necrosis factor-α therapy goes through downregulation of certain adhesion molecules.
The glutathione transferase Mu null genotype leads to lower 6-MMPR levels in patients treated with azathioprine but not with mercaptopurine
The conversion of azathioprine (AZA) to mercaptopurine (MP) is mediated by glutathione transferase Mu1 (GSTM1), alpha1 (GSTA1) and alpha2 (GSTA2). We designed a case-control study with data from the TOPIC trial to explore the effects of genetic variation on steady state 6-methylmercaptopurine ribonucleotide (6-MMPR) and 6-thioguanine nucleotide (6-TGN) metabolite levels. We included 199 patients with inflammatory bowel disease (126 on AZA and 73 on MP). GSTM1-null genotype carriers on AZA had two-fold lower 6-MMPR levels than AZA users carrying one or two copies of GSTM1 (2239 (1006-4587) versus 4371 (1897-7369) pmol/8 × 108 RBCs; P<0.01). In patients on MP (control group) 6-MMPR levels were comparable (6195 (1551-10712) versus 6544 (1717-11600) pmol/8 × 108 RBCs; P=0.84). The 6-TGN levels were not affected by the GSTM1 genotype. The presence of genetic variants in GSTA1 and GSTA2 was not related to the 6-MMPR and 6-TGN levels.
Gut microbiota-derived metabolites as key actors in inflammatory bowel disease
A key role of the gut microbiota in the establishment and maintenance of health, as well as in the pathogenesis of disease, has been identified over the past two decades. One of the primary modes by which the gut microbiota interacts with the host is by means of metabolites, which are small molecules that are produced as intermediate or end products of microbial metabolism. These metabolites can derive from bacterial metabolism of dietary substrates, modification of host molecules, such as bile acids, or directly from bacteria. Signals from microbial metabolites influence immune maturation, immune homeostasis, host energy metabolism and maintenance of mucosal integrity. Alterations in the composition and function of the microbiota have been described in many studies on IBD. Alterations have also been described in the metabolite profiles of patients with IBD. Furthermore, specific classes of metabolites, notably bile acids, short-chain fatty acids and tryptophan metabolites, have been implicated in the pathogenesis of IBD. This Review aims to define the key classes of microbial-derived metabolites that are altered in IBD, describe the pathophysiological basis of these associations and identify future targets for precision therapeutic modulation.Alterations in the gut microbiota and metabolite profiles of patients with IBD have been described. In this Review, Lavelle and Sokol discuss these alterations and their pathophysiological basis, and identify future targets for precision therapeutic modulation.
Calprotectin: from biomarker to biological function
The incidence of inflammatory bowel diseases (IBD) emerged with Westernisation of dietary habits worldwide. Crohn’s disease and ulcerative colitis are chronic debilitating conditions that afflict individuals with substantial morbidity and challenge healthcare systems across the globe. Since identification and characterisation of calprotectin (CP) in the 1980s, faecal CP emerged as significantly validated, non-invasive biomarker that allows evaluation of gut inflammation. Faecal CP discriminates between inflammatory and non-inflammatory diseases of the gut and portraits the disease course of human IBD. Recent studies revealed insights into biological functions of the CP subunits S100A8 and S100A9 during orchestration of an inflammatory response at mucosal surfaces across organ systems. In this review, we summarise longitudinal evidence for the evolution of CP from biomarker to rheostat of mucosal inflammation and suggest an algorithm for the interpretation of faecal CP in daily clinical practice. We propose that mechanistic insights into the biological function of CP in the gut and beyond may facilitate interpretation of current assays and guide patient-tailored medical therapy in IBD, a concept warranting controlled clinical trials.
Host–microbiota interactions in inflammatory bowel disease
The mammalian intestine is colonized by trillions of microorganisms that have co-evolved with the host in a symbiotic relationship. The presence of large numbers of symbionts near the epithelial surface of the intestine poses an enormous challenge to the host because it must avoid the activation of harmful inflammatory responses to the microorganisms while preserving its ability to mount robust immune responses to invading pathogens. In patients with inflammatory bowel disease, there is a breakdown of the multiple strategies that the immune system has evolved to promote the separation between symbiotic microorganisms and the intestinal epithelium and the effective killing of penetrant microorganisms, while suppressing the activation of inappropriate T cell responses to resident microorganisms. Understanding the complex interactions between intestinal microorganisms and the host may provide crucial insight into the pathogenesis of inflammatory bowel disease as well as new avenues to prevent and treat the disease.This Review describes the breakdown of ‘mucosal firewalls’ in patients with inflammatory bowel disease, involving immunological pathways that regulate microbial recognition and killing, immune responses to microorganisms and the reinforcement of the intestinal barrier.
Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases
The gut microbiota has a critical role in the maintenance of immune homeostasis. Alterations in the intestinal microbiota and gut microbiota-derived metabolites have been recognized in many immune-related inflammatory disorders. These metabolites can be produced by gut microbiota from dietary components or by the host and can be modified by gut bacteria or synthesized de novo by gut bacteria. Gut microbiota-derived metabolites influence a plethora of immune cell responses, including T cells, B cells, dendritic cells, and macrophages. Some of these metabolites are involved in the pathogenesis of immune-related inflammatory diseases, such as inflammatory bowel diseases, diabetes, rheumatoid arthritis, and systemic lupus erythematosus. Here, we review the role of microbiota-derived metabolites in regulating the functions of different immune cells and the pathogenesis of chronic immune-related inflammatory diseases.