Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
8,187 result(s) for "Interferon-gamma - genetics"
Sort by:
The Role of Interferon-γ in Autoimmune Polyendocrine Syndrome Type 1
In this study, interferon-γ was found to play a large role in the pathogenesis of APS-1. Results were confirmed in studies in animals and led to a trial of ruxolitinib in five patients, who had dramatic responses.
Survival and biomarker analyses from the OpACIN-neo and OpACIN neoadjuvant immunotherapy trials in stage III melanoma
Neoadjuvant ipilimumab plus nivolumab showed high pathologic response rates (pRRs) in patients with macroscopic stage III melanoma in the phase 1b OpACIN ( NCT02437279 ) and phase 2 OpACIN-neo ( NCT02977052 ) studies 1 , 2 . While the results are promising, data on the durability of these pathologic responses and baseline biomarkers for response and survival were lacking. After a median follow-up of 4 years, none of the patients with a pathologic response ( n  = 7/9 patients) in the OpACIN study had relapsed. In OpACIN-neo ( n  = 86), the 2-year estimated relapse-free survival was 84% for all patients, 97% for patients achieving a pathologic response and 36% for nonresponders ( P  < 0.001). High tumor mutational burden (TMB) and high interferon-gamma-related gene expression signature score (IFN-γ score) were associated with pathologic response and low risk of relapse; pRR was 100% in patients with high IFN-γ score/high TMB; patients with high IFN-γ score/low TMB or low IFN-γ score/high TMB had pRRs of 91% and 88%; while patients with low IFN-γ score/low TMB had a pRR of only 39%. These data demonstrate long-term benefit in patients with a pathologic response and show the predictive potential of TMB and IFN-γ score. Our findings provide a strong rationale for a randomized phase 3 study comparing neoadjuvant ipilimumab plus nivolumab versus standard adjuvant therapy with antibodies against the programmed cell death protein-1 (anti-PD-1) in macroscopic stage III melanoma. Long-term outcomes and biomarker analyses of two neoadjuvant immunotherapy clinical trials in melanoma patients support the clinical benefit of this treatment approach and uncover prognostic correlates of response.
TLR4 genotype and environmental LPS mediate RSV bronchiolitis through Th2 polarization
While 30%-70% of RSV-infected infants develop bronchiolitis, 2% require hospitalization. It is not clear why disease severity differs among healthy, full-term infants; however, virus titers, inflammation, and Th2 bias are proposed explanations. While TLR4 is associated with these disease phenotypes, the role of this receptor in respiratory syncytial virus (RSV) pathogenesis is controversial. Here, we evaluated the interaction between TLR4 and environmental factors in RSV disease and defined the immune mediators associated with severe illness. Two independent populations of infants with RSV bronchiolitis revealed that the severity of RSV infection is determined by the TLR4 genotype of the individual and by environmental exposure to LPS. RSV-infected infants with severe disease exhibited a high GATA3/T-bet ratio, which manifested as a high IL-4/IFN-γ ratio in respiratory secretions. The IL-4/IFN-γ ratio present in infants with severe RSV is indicative of Th2 polarization. Murine models of RSV infection confirmed that LPS exposure, Tlr4 genotype, and Th2 polarization influence disease phenotypes. Together, the results of this study identify environmental and genetic factors that influence RSV pathogenesis and reveal that a high IL-4/IFN-γ ratio is associated with severe disease. Moreover, these molecules should be explored as potential targets for therapeutic intervention.
Do Intracerebral Cytokine Responses Explain the Harmful Effects of Dexamethasone in Human Immunodeficiency Virus–associated Cryptococcal Meningitis?
Abstract Background The CryptoDex trial showed that dexamethasone caused poorer clinical outcomes and slowed fungal clearance in human immunodeficiency virus–associated cryptococcal meningitis. We analyzed cerebrospinal fluid (CSF) cytokine concentrations from participants over the first week of treatment to investigate mechanisms of harm and test 2 hypotheses: (1) dexamethasone reduced proinflammatory cytokine concentrations, leading to poorer outcomes and (2) leukotriene A4 hydrolase (LTA4H) genotype influenced the clinical impact of dexamethasone, as observed in tuberculous meningitis. Methods We included participants from Vietnam, Thailand, and Uganda. Using the Luminex system, we measured CSF concentrations of the following: interferon γ, tumor necrosis factor (TNF) α, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant 1, macrophage inflammatory protein 1α, and interleukin 6, 12p70, 8, 4, 10, and 17. We determined the LTA4H genotype based on the promoter region single-nucleotide polymorphism rs17525495. We assessed the impact of dexamethasone on cytokine concentration dynamics and the association between cytokine concentration dynamics and fungal clearance with mixed effect models. We measured the influence of LTA4H genotype on outcomes with Cox regression models. Results Dexamethasone increased the rate TNF-α concentration’s decline in (−0.13 log2pg/mL/d (95% confidence interval, −.22 to −.06 log2pg/mL/d; P = .03), which was associated with slower fungal clearance (correlation, −0.62; 95% confidence interval, −.83 to −.26). LTA4H genotype had no statistically significant impact on outcome or response to dexamethasone therapy. Better clinical outcomes were associated with higher baseline concentrations of interferon γ. Conclusions Dexamethasone may slow fungal clearance and worsen outcomes by increasing TNF-α concentration’s rate of decline. We investigated clinical and microbiological impacts of longitudinal cerebrospinal fluid cytokine concentrations in human immunodeficiency virus–associated cryptococcal meningitis, and interactions with dexamethasone therapy or leukotriene A4 hydrolase genotype. We found that faster declines in tumor necrosis factor α were associated with reduced fungal clearance.
Decrease in Mucosal IL17A, IFNγ and IL10 Expressions in Active Crohn's Disease Patients Treated with High-Dose Vitamin Alone or Combined with Infliximab
Vitamin D treatment may reduce Crohn's disease (CD) activity by modulating the mucosal immune function. We investigated if high-dose vitamin D +/- infliximab modulated the mucosal cytokine expression in active CD. Forty CD patients were randomized into: infliximab + vitamin D; infliximab + placebo-vitamin D; placebo-infliximab + vitamin D or placebo-infliximab + placebo-vitamin D. Infliximab (5 mg/kg) and placebo-infliximab were administered at weeks 0, 2 and 6. Oral vitamin D was administered as bolus 200,000 international units (IU) per week 0 followed by 20,000 IU/day for 7 weeks or placebo. Endoscopy with biopsies was performed at weeks 0 and 7 where endoscopic activity was measured and mucosal mRNA cytokine expression was examined. C-reactive protein (CRP), fecal calprotectin and Harvey-Bradshaw Index (HBI) were measured at weeks 0, 2 and 6. High-dose vitamin D treatment alone and combined with infliximab decreased the IL17A, IFNγ and IL10 expression. High-dose vitamin D alone did not significantly decrease the disease activity, CRP or calprotectin. Combined infliximab and vitamin D treatment was not clinically significantly superior to monotherapy with infliximab. High-dose vitamin D as monotherapy and combined with infliximab decreases IL17A, IFNγ and IL-10 expression in mucosa within treatment groups. This did not induce a statistically significant decreased disease activity. EudraCT no.2013-000971-34.
The SNP rs2298383 Reduces ADORA2A Gene Transcription and Positively Associates with Cytokine Production by Peripheral Blood Mononuclear Cells in Patients with Multiple Chemical Sensitivity
Systemic inflammation and immune activation are striking features of multiple chemical sensitivity (MCS). The rs2298383 SNP of ADORA2A gene, coding for adenosine receptor type 2A (A2AR), has been involved in aberrant immune activation. Here we aimed to assess the prevalence of this SNP in 279 MCS patients and 238 healthy subjects, and its influence on ADORA2A, IFNG and IL4 transcript amounts in peripheral blood mononuclear cells of randomly selected patients (n = 70) and controls (n = 66) having different ADORA2A genotypes. The ADORA2A rs2298383 TT mutated genotype, significantly more frequent in MCS patients than in controls, was associated with a three-fold increased risk for MCS (O.R. = 2.86; C.I. 95% 1.99–4.12, p < 0.0001), while the CT genotype, highly prevalent among controls, resulted to be protective (O.R. = 0.33; C.I. 95% 0.224–0.475, p < 0.0001). Notably, ADORA2A mRNA levels were significantly lower, while IFNG, but not IL4, mRNA levels were significantly higher in TT MCS patients compared with controls. A significant negative correlation was found between ADORA2A and both IFNG and IL4, while a significant positive correlation was found between IFNG and IL4. These findings suggest that A2AR defective signaling may play a relevant role in PBMC shift towards a pro-inflammatory phenotype in MCS patients.
Vaccine Adjuvant Systems containing monophosphoryl lipid A and QS21 induce strong and persistent humoral and T cell responses against hepatitis B surface antigen in healthy adult volunteers
A randomised, double-blind study assessing the potential of four adjuvants in combination with recombinant hepatitis B surface antigen has been conducted to evaluate humoral and cell-mediated immune responses in healthy adults after three vaccine doses at months 0, 1 and 10. Three Adjuvant Systems (AS) contained 3- O-desacyl-4′-monophosphoryl lipid A (MPL) and QS21, formulated either with an oil-in-water emulsion (AS02B and AS02V) or with liposomes (AS01B). The fourth adjuvant was CpG oligonucleotide. High levels of antibodies were induced by all adjuvants, whereas cell-mediated immune responses, including cytolytic T cells and strong and persistent CD4 + T cell response were mainly observed with the three MPL/QS21-containing Adjuvant Systems. The CD4 + T cell response was characterised in vitro by vigorous lymphoproliferation, high IFN-γ and moderate IL-5 production. Antigen-specific T cell immune response was further confirmed ex vivo by detection of IL-2- and IFN-γ-producing CD4 + T cells, and in vivo by measuring increased levels of IFN-γ in the serum and delayed-type hypersensitivity (DTH) responses. The CpG adjuvanted vaccine induced consistently lower immune responses for all parameters. All vaccine adjuvants were shown to be safe with acceptable reactogenicity profiles. The majority of subjects reported local reactions at the injection site after vaccination while general reactions were recorded less frequently. No vaccine-related serious adverse event was reported. Importantly, no increase in markers of auto-immunity and allergy was detected over the whole study course. In conclusion, the Adjuvant Systems containing MPL/QS21, in combination with hepatitis B surface antigen, induced very strong humoral and cellular immune responses in healthy adults. The AS01B-adjuvanted vaccine induced the strongest and most durable specific cellular immune responses after two doses. These Adjuvant Systems, when added to recombinant protein antigens, can be fundamental to develop effective prophylactic vaccines against complex pathogens, e.g. malaria, HIV infection and tuberculosis, and for special target populations such as subjects with an impaired immune response, due to age or medical conditions.
No association of genetic variants in TLR4, TNF-α, IL10, IFN-γ, and IL37 in cytomegalovirus-positive renal allograft recipients with active CMV infection—Subanalysis of the prospective randomised VIPP study
Cytomegalovirus (CMV) infection is amongst the most important factors complicating solid organ transplantation. In a large prospective randomized clinical trial, valganciclovir prophylaxis reduced the occurrence of CMV infection and disease compared with preemptive therapy in CMV-positive renal allograft recipients (VIPP study; NCT00372229). Here, we present a subanalysis of the VIPP study, investigating single nucleotide polymorphisms (SNPs) in immune-response-related genes and their association with active CMV infection, CMV disease, graft loss or death, rejection, infections, and leukopenia. Based on literature research ten SNPs were analyzed for TLR4, three for IFN-γ, six for IL10, nine for IL37, and two for TNF-α. An asymptotic independence test (Cochran-Armitage trend test) was used to examine associations between SNPs and the occurrence of CMV infection or other negative outcomes. Statistical significance was defined as p<0.05 and Bonferroni correction for multiple testing was performed. SNPs were analyzed on 116 blood samples. No associations were found between the analyzed SNPs and the occurrence of CMV infection, rejection and leukopenia in all patients. For IL37 rs2723186, an association with CMV disease (p = 0.0499), for IL10 rs1800872, with graft loss or death (p = 0.0207) and for IL10 rs3024496, with infections (p = 0.0258) was observed in all patients, however did not hold true after correction for multiple testing. The study did not reveal significant associations between the analyzed SNPs and the occurrence of negative outcomes in CMV-positive renal transplant recipients after correction for multiple testing. The results of this association analysis may be of use in guiding future research efforts.
Effect of vitamin D supplementation on cathelicidin, IFN-γ, IL-4 and Th1/Th2 transcription factors in young healthy females
Objectives: We assessed the effect of cholecalciferol and calcium supplementation on mRNA expression of cathelicidin (LL-37), Th1 and Th2 cytokines and their transcription factors in the peripheral blood mononuclear cells (PBMCs) in healthy females with vitamin D deficiency (VDD). Subjects/Methods: Subjects included 131 females with biochemical VDD randomized to receive (a) oral cholecalciferol (60 000 IU/week for 8 weeks followed by 60 000 IU/fortnight (b) calcium (elemental calcium 500 mg twice/day) (c), dual supplementation and (d) placebo for 6 months. The mRNA expression of cathelicidin, Th1 (IFN-γ) and Th2 (IL-4 and its antagonist-IL-4δ2) cytokines and their transcription factors (T-bet, STAT4, GATA-3, STAT6) were measured in the PBMC by real-time PCR before and after intervention. Results: Cholecalciferol-supplemented groups showed significant rise of mean serum 25(OH)D (30.6±7.51 and 28.6±8.41 ng/ml). The expression of LL-37, IFN-γ, IL-4, IL-4δ2 and transcription factors were comparable in the four groups at baseline. Despite significant increase in mean serum 25(OH)D in the cholecalciferol-supplemented groups, their mean mRNA transcripts of LL-37, IFN-γ, IL-4, transcription factors and their IFN-γ/IL-4 and T-bet/GATA-3 ratios were similar to that of calcium and placebo groups. Conclusions: Six months of cholecalciferol/calcium supplementation in young females with VDD do not lead to significant alteration in mRNA expression of LL-37, Th1/Th2 cytokines and their transcription factors.
Effects of upregulated indoleamine 2, 3-dioxygenase 1 by interferon γ gene transfer on interferon γ-mediated antitumor activity
Interferon γ (IFN-γ), an anticancer agent, is a strong inducer of indoleamine 2,3-dioxygenase 1 (IDO1), which is a tryptophan-metabolizing enzyme involved in the induction of tumor immune tolerance. In this study, we investigated the IDO1 expression in organs after IFN-γ gene transfer to mice. IFN-γ gene transfer greatly increased the mRNA expression of IDO1 in many tissues with the highest in the liver. This upregulation was associated with reduced L -tryptophan levels and increased L -kynurenine levels in serum, indicating that IFN-γ gene transfer increased the IDO activity. Then, Lewis lung carcinoma (LLC) tumor-bearing wild-type and IDO1-knockout (IDO1 KO) mice were used to investigate the effects of IDO1 on the antitumor activity of IFN-γ. IFN-γ gene transfer significantly retarded the tumor growth in both strains without any significant difference in tumor size between the two groups. By contrast, the IDO1 activity was increased only in the wild-type mice by IFN-γ gene transfer, suggesting that cells other than LLC cells, such as tumor stromal cells, are the major contributors of IDO1 expression in LLC tumor. Taken together, these results imply that IFN-γ gene transfer mediated IDO1 upregulation in cells other than LLC cells has hardly any effect on the antitumor activity of IFN-γ.