Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
535 result(s) for "Internet of things Health aspects."
Sort by:
The Recent Progress and Applications of Digital Technologies in Healthcare: A Review
Background. The implementation of medical digital technologies can provide better accessibility and flexibility of healthcare for the public. It encompasses the availability of open information on the health, treatment, complications, and recent progress on biomedical research. At present, even in low-income countries, diagnostic and medical services are becoming more accessible and available. However, many issues related to digital health technologies remain unmet, including the reliability, safety, testing, and ethical aspects. Purpose. The aim of the review is to discuss and analyze the recent progress on the application of big data, artificial intelligence, telemedicine, block-chain platforms, smart devices in healthcare, and medical education. Basic Design. The publication search was carried out using Google Scholar, PubMed, Web of Sciences, Medline, Wiley Online Library, and CrossRef databases. The review highlights the applications of artificial intelligence, “big data,” telemedicine and block-chain technologies, and smart devices (internet of things) for solving the real problems in healthcare and medical education. Major Findings. We identified 252 papers related to the digital health area. However, the number of papers discussed in the review was limited to 152 due to the exclusion criteria. The literature search demonstrated that digital health technologies became highly sought due to recent pandemics, including COVID-19. The disastrous dissemination of COVID-19 through all continents triggered the need for fast and effective solutions to localize, manage, and treat the viral infection. In this regard, the use of telemedicine and other e-health technologies might help to lessen the pressure on healthcare systems. Summary. Digital platforms can help optimize diagnosis, consulting, and treatment of patients. However, due to the lack of official regulations and recommendations, the stakeholders, including private and governmental organizations, are facing the problem with adequate validation and approbation of novel digital health technologies. In this regard, proper scientific research is required before a digital product is deployed for the healthcare sector.
Machine learning in medicine: Addressing ethical challenges
First are cases in which the data sources themselves do not reflect true epidemiology within a given demographic, as for instance in population data biased by the entrenched overdiagnosis of schizophrenia in African Americans [8]. [...]are cases in which an algorithm is trained on a data set that does not contain enough members of a given demographic—for instance, an algorithm trained mostly on data from older white men. [...]the disclosure of basic yet meaningful details about medical treatment to patients—a fundamental tenet of medical ethics—requires that the doctors themselves grasp at least the fundamental inner workings of the devices they use. [...]for MLm to be ethical, developers must communicate to their end users—doctors—the general logic behind MLm-based decisions. [...]the allocation and grounds for liability for adverse events related to the use of MLm will need to be clarified.
Associations between digital literacy, health literacy, and digital health behaviors among rural residents: evidence from Zhejiang, China
Objective Within the digital society, the limited proficiency in digital health behaviors among rural residents has emerged as a significant factor intensifying health disparities between urban and rural areas. Addressing this issue, enhancing the digital literacy and health literacy of rural residents stands out as a crucial strategy. This study aims to investigate the relationship between digital literacy, health literacy, and the digital health behaviors of rural residents. Methods Initially, we developed measurement instruments aimed at assessing the levels of digital literacy and health literacy among rural residents. Subsequently, leveraging micro survey data, we conducted assessments on the digital literacy and health literacy of 968 residents in five administrative villages in Zhejiang Province, China. Building upon this foundation, we employed Probit and Poisson models to empirically scrutinize the influence of digital literacy, health literacy, and their interaction on the manifestation of digital health behaviors within the rural population. This analysis was conducted from a dual perspective, evaluating the participation of digital health behaviors among rural residents and the diversity to which they participate in such behaviors. Results Digital literacy exhibited a notably positive influence on both the participation and diversity of digital health behaviors among rural residents. While health literacy did not emerge as a predictor for the occurrence of digital health behavior, it exerted a substantial positive impact on the diversity of digital health behaviors in the rural population. There were significant interaction effects between digital literacy and health literacy concerning the participation and diversity of digital health behaviors among rural residents. These findings remained robust even after implementing the instrumental variable method to address endogeneity issues. Furthermore, the outcomes of robust analysis and heterogeneity analysis further fortify the steadfastness of the aforementioned conclusions. Conclusion The findings suggest that policymakers should implement targeted measures aimed at enhancing digital literacy and health literacy among rural residents. This approach is crucial for improving rural residents' access to digital health services, thereby mitigating urban–rural health inequality.
IoT-Based Healthcare-Monitoring System towards Improving Quality of Life: A Review
The Internet of Things (IoT) is essential in innovative applications such as smart cities, smart homes, education, healthcare, transportation, and defense operations. IoT applications are particularly beneficial for providing healthcare because they enable secure and real-time remote patient monitoring to improve the quality of people’s lives. This review paper explores the latest trends in healthcare-monitoring systems by implementing the role of the IoT. The work discusses the benefits of IoT-based healthcare systems with regard to their significance, and the benefits of IoT healthcare. We provide a systematic review on recent studies of IoT-based healthcare-monitoring systems through literature review. The literature review compares various systems’ effectiveness, efficiency, data protection, privacy, security, and monitoring. The paper also explores wireless- and wearable-sensor-based IoT monitoring systems and provides a classification of healthcare-monitoring sensors. We also elaborate, in detail, on the challenges and open issues regarding healthcare security and privacy, and QoS. Finally, suggestions and recommendations for IoT healthcare applications are laid down at the end of the study along with future directions related to various recent technology trends.
Feasibility of smart wristbands for continuous monitoring during pregnancy and one month after birth
Background Smart wristbands enable the continuous monitoring of health parameters, for example, in maternity care. Understanding the feasibility and acceptability of these devices in an authentic context is essential. The aim of this study was to evaluate the feasibility of using a smart wristband to collect continuous activity, sleep and heart rate data from the beginning of the second trimester until one month postpartum. Methods The feasibility of a smart wristband was tested prospectively through pregnancy in nulliparous women ( n  = 20). The outcomes measured were the wear time of the device and the participants’ experiences with the smart wristband. The data were collected from the wristbands, phone interviews, questionnaires, and electronic patient records. The quantitative data were analyzed with hierarchical linear mixed models for repeated measures, and qualitative data were analyzed using content analysis. Results Participants ( n  = 20) were recruited at a median of 12.9 weeks of gestation. They used the smart wristbands for an average of 182 days during the seven-month study period. The daily use of the devices was similar during the second (17.9 h, 95% CI 15.2 to 20.7) and third trimesters (16.7 h, 95% CI 13.8 to 19.5) but decreased during the postpartum period (14.4 h, 95% CI 11.4 to 17.4, p  = 0.0079). Participants who could not wear smart wristbands at work used the device 300 min less per day than did those with no use limitations. Eight of the participants did not wear the devices or wore them only occasionally after giving birth. Nineteen participants reported that the smart wristband did not have any permanent effects on their behavior. Problems with charging and synchronizing the devices, perceiving the devices as uncomfortable, or viewing the data as unreliable, and the fear of scratching their babies with the devices were the main reasons for not using the smart wristbands. Conclusions A smart wristband is a feasible tool for continuous monitoring during pregnancy. However, the daily use decreased after birth. The results of this study may support the planning of future studies and help with overcoming barriers related to the use of smart wristbands on pregnant women.
Beyond the hype of big data and artificial intelligence: building foundations for knowledge and wisdom
Big data, coupled with the use of advanced analytical approaches, such as artificial intelligence (AI), have the potential to improve medical outcomes and population health. Data that are routinely generated from, for example, electronic medical records and smart devices have become progressively easier and cheaper to collect, process, and analyze. In recent decades, this has prompted a substantial increase in biomedical research efforts outside traditional clinical trial settings. Despite the apparent enthusiasm of researchers, funders, and the media, evidence is scarce for successful implementation of products, algorithms, and services arising that make a real difference to clinical care. This article collection provides concrete examples of how “big data” can be used to advance healthcare and discusses some of the limitations and challenges encountered with this type of research. It primarily focuses on real-world data, such as electronic medical records and genomic medicine, considers new developments in AI and digital health, and discusses ethical considerations and issues related to data sharing. Overall, we remain positive that big data studies and associated new technologies will continue to guide novel, exciting research that will ultimately improve healthcare and medicine—but we are also realistic that concerns remain about privacy, equity, security, and benefit to all.
Digital technology and COVID-19
The past decade has allowed the development of a multitude of digital tools. Now they can be used to remediate the COVID-19 outbreak.
Deep Learning-Based IoT System for Remote Monitoring and Early Detection of Health Issues in Real-Time
With an aging population and increased chronic diseases, remote health monitoring has become critical to improving patient care and reducing healthcare costs. The Internet of Things (IoT) has recently drawn much interest as a potential remote health monitoring remedy. IoT-based systems can gather and analyze a wide range of physiological data, including blood oxygen levels, heart rates, body temperatures, and ECG signals, and then provide real-time feedback to medical professionals so they may take appropriate action. This paper proposes an IoT-based system for remote monitoring and early detection of health problems in home clinical settings. The system comprises three sensor types: MAX30100 for measuring blood oxygen level and heart rate; AD8232 ECG sensor module for ECG signal data; and MLX90614 non-contact infrared sensor for body temperature. The collected data is transmitted to a server using the MQTT protocol. A pre-trained deep learning model based on a convolutional neural network with an attention layer is used on the server to classify potential diseases. The system can detect five different categories of heartbeats: Normal Beat, Supraventricular premature beat, Premature ventricular contraction, Fusion of ventricular, and Unclassifiable beat from ECG sensor data and fever or non-fever from body temperature. Furthermore, the system provides a report on the patient’s heart rate and oxygen level, indicating whether they are within normal ranges or not. The system automatically connects the user to the nearest doctor for further diagnosis if any critical abnormalities are detected.
The application of artificial intelligence in health policy: a scoping review
Background Policymakers require precise and in-time information to make informed decisions in complex environments such as health systems. Artificial intelligence (AI) is a novel approach that makes collecting and analyzing data in complex systems more accessible. This study highlights recent research on AI’s application and capabilities in health policymaking. Methods We searched PubMed, Scopus, and the Web of Science databases to find relevant studies from 2000 to 2023, using the keywords “artificial intelligence” and “policymaking.” We used Walt and Gilson’s policy triangle framework for charting the data. Results The results revealed that using AI in health policy paved the way for novel analyses and innovative solutions for intelligent decision-making and data collection, potentially enhancing policymaking capacities, particularly in the evaluation phase. It can also be employed to create innovative agendas with fewer political constraints and greater rationality, resulting in evidence-based policies. By creating new platforms and toolkits, AI also offers the chance to make judgments based on solid facts. The majority of the proposed AI solutions for health policy aim to improve decision-making rather than replace experts. Conclusion Numerous approaches exist for AI to influence the health policymaking process. Health systems can benefit from AI’s potential to foster the meaningful use of evidence-based policymaking.
An overview of GeoAI applications in health and healthcare
The moulding together of artificial intelligence (AI) and the geographic/geographic information systems (GIS) dimension creates GeoAI. There is an emerging role for GeoAI in health and healthcare, as location is an integral part of both population and individual health. This article provides an overview of GeoAI technologies (methods, tools and software), and their current and potential applications in several disciplines within public health, precision medicine, and Internet of Things-powered smart healthy cities. The potential challenges currently facing GeoAI research and applications in health and healthcare are also briefly discussed.