Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
104
result(s) for
"Inulin - isolation "
Sort by:
Extraction and Characterization of Inulin-Type Fructans from Artichoke Wastes and Their Effect on the Growth of Intestinal Bacteria Associated with Health
2019
Globe artichoke is an intriguing source of indigestible sugar polymers such as inulin-type fructans. In this study, the effect of ultrasound in combination with ethanol precipitation to enhance the extraction of long chain fructans from artichoke wastes has been evaluated. The inulin-type fructans content both from bracts and stems was measured using an enzymatic fructanase-based assay, while its average degree of polymerization (DP) was determined by HPLC-RID analysis. Results show that this method provides artichoke extracts with an inulin-type fructans content of 70% with an average DP between 32 and 42 both in bracts and in stems. The prebiotic effect of long chain inulins from artichoke extract wastes was demonstrated by its ability to support the growth of five Lactobacillus and four Bifidobacterium species, previously characterized as probiotics. Besides, we considered the possibility to industrialize the process developing a simpler method for the production of inulin-type fructans from the artichoke wastes so that the artichoke inulin preparation could be suitable for its use in synbiotic formulations in combination with different probiotics for further studies including in vivo trials.
Journal Article
Production of inulinase, fructosyltransferase and sucrase from fungi on low-value inulin-rich substrates and their use in generation of fructose and fructo-oligosaccharides
by
Kango, Naveen
,
Rawat, Hemant Kumar
,
Ganaie, Mohd Anis
in
Asparagus
,
Asparagus Plant - chemistry
,
Aspergillus
2015
Owing to applications in the food and nutraceutical industries, inulinases, fructosyltransferases and sucrases have gained considerable attention in recent times. Twenty-five fungal strains were screened for production of these enzymes on three different media formulated using inulin-rich plant extracts prepared from asparagus root, dahlia tuber and dandelion root extract. Culture filtrates of the fungi were examined for hydrolytic activities. Fungi belonging to genus
Aspergillus,
A. niger
GNCC 2655 (11.3 U/ml),
A. awamori
MTCC 2879 (8.2 U/ml),
A. niger
ATCC 26011 (7.9 U/ml) secreted high titers of inulinase followed by
Penicillium
sp. NFCCI 2768 (2.6 U/ml) and
Penicillium citrinum
MTCC 1256 (1.1 U/ml). High sucrase activity was noticed in
A. niger
GNCC 2613 (113 U/ml) and
A. awamori
MTCC 2879 (107.8 U/ml). Analysis of end products of inulinase action by HPLC revealed that most of the enzymes were exo-inulinases liberating fructose exclusively from inulin. Five fungi,
P. citrinum
MTCC 1256,
Penicillium rugulosum
MTCC 3487,
Penicillium
sp. NFCCI 2768,
A. fumigatus
GNCC 1351 and
A. niger
ATCC 26011 however, produced a mixture of endo- and exo-inulinases liberating oligosaccharides (GF3 and GF2) along with fructose. High inulinase/sucrase yielding strains were evaluated for extracellular and intracellular hydrolytic and transfructosylating activities and intracellular enzyme profiles were found to be considerably different in terms of titers and end products.
Journal Article
The inulin-type oligosaccharides extract from morinda officinalis, a traditional Chinese herb, ameliorated behavioral deficits in an animal model of post-traumatic stress disorder
2016
Post-traumatic stress disorder (PTSD) is a severe psychiatric condition. The allopregnanolone biosynthesis has been implicated as one of the possible contributors to PTSD. Inulin-type oligosaccharides of morinda officinalis (IOMO) had been shown to be effective in the therapy of depression. However, few studies concern the anti-PTSD-like effects of IOMO. To evaluate this, the single prolonged stress (SPS) model was used in the present study. It had been shown that the behavioral deficits of SPS-treated rats were reversed by IOMO (25.0 and 50.0 mg/kg, i.p.), which reversed the increased freezing time in contextual fear paradigm (CFP) and the decreased time and entries in open arms in the elevated plus maze (EPM) test without affecting the locomotor activity in the open field (OF) test. In addition, the decreased allopregnanolone in the prefrontal cortex, hippocampus, and amygdala was reversed by IOMO (25.0 and 50.0 mg/kg, i.p.), respectively. In summary, the present study indicated that the IOMO exert anti-PTSD-like behaviors, which maybe associated with the brain allopregnanolone biosynthesis.
Journal Article
Inulin and derivates as key ingredients in functional foods
by
Sangronis, Elba
,
Madrigal, Lorena
in
Cichorium intybus - chemistry
,
Food Technology
,
Food, Organic
2007
Inulin is a non-digestible carbohydrate that is contained in many vegetables, fruits and cereals. It is industrially produced from the chicory's root (Cichorium intybus) and it is widely used as ingredient in functional foods. Inulin and its derivate compounds (oligofructose, fructooligosaccharides) are usually called fructans, as they are basically based on linear fructose chains. This review presents a description of inulin and its most common derivate compounds: chemical structure, natural sources, physic-chemical properties, technological functionality, industrial manufacturing, analytical method for determination and health benefits: prebiotic, dietary fiber, low caloric value, hypoglycemic action, enhancement of calcium and magnesium bioavailability. Potential benefits: lipid parameters regulation, reduction of colon cancer risk and others, improvement of immune response, intestinal disorders protection. From technological point of view, these compounds exhibit a variety of properties: thickener, emulsifier, gel forming, sugar and fat substitute, humectant, freezing point depression. Inulin and derivates are been used in pharmaceutical, chemical and processing industry as technological additives and excipients. They are also been used for animal feeding. They are been considered as \"bioactive\" compounds to be proposed as future packaging material. Fructans are proposed to be classified as \"functional fiber\", according to recent concepts based on physiological effects on individuals. This review of inulin and its derivates was useful to show the broad boundaries of these compounds in the food industry and why they may be considered as key ingredients in the expanding functional food market.
Journal Article
Glucose-free fructose production from Jerusalem artichoke using a recombinant inulinase-secreting Saccharomyces cerevisiae strain
2011
Purpose of work Using inulin (polyfructose) obtained from Jerusalen artichokes, we have produced fructose free of residual glucose using a recombinant inulinase-secreting strain of Saccharomyces cerevisiae in a one-step fermentation of Jerusalem artichoke tubers. For producing fructose from inulin, a recombinant inulinase-producing Saccharomyce cerevisiae strain was constructed with a deficiency in fructose uptake by disruption of two hexokinase genes hxk1 and hxk2. The inulinase gene introduced into S. cerevisiae was cloned from Kluyveromyces cicerisporus. Extracellular inulinase activity of the recombinant hxk-mutated S. cerevisiae strain reached 31 U ml⁻¹ after 96 h growth. When grown in a medium containing Jerusalem artichoke tubers as the sole component without any additives, the recombinant yeast accumulated fructose up to 9.2% (w/v) in the fermentation broth with only 0.1% (w/v) glucose left after 24 h.
Journal Article
Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study
2018
Dysbiotic gut microbiota have been implicated in human disease. Diet-based therapeutic strategies have been used to manipulate the gut microbiota towards a more favourable profile. However, it has been demonstrated that large inter-individual variability exists in gut microbiota response to a dietary intervention. The primary objective of this study was to investigate whether habitually low dietary fibre (LDF) v. high dietary fibre (HDF) intakes influence gut microbiota response to an inulin-type fructan prebiotic. In this randomised, double-blind, placebo-controlled, cross-over study, thirty-four healthy participants were classified as LDF or HDF consumers. Gut microbiota composition (16S rRNA bacterial gene sequencing) and SCFA concentrations were assessed following 3 weeks of daily prebiotic supplementation (Orafti® Synergy 1; 16 g/d) or placebo (Glucidex® 29 Premium; 16 g/d), as well as after 3 weeks of the alternative intervention, following a 3-week washout period. In the LDF group, the prebiotic intervention led to an increase in Bifidobacterium (P=0·001). In the HDF group, the prebiotic intervention led to an increase in Bifidobacterium (P<0·001) and Faecalibacterium (P=0·010) and decreases in Coprococcus (P=0·010), Dorea (P=0·043) and Ruminococcus (Lachnospiraceae family) (P=0·032). This study demonstrates that those with HDF intakes have a greater gut microbiota response and are therefore more likely to benefit from an inulin-type fructan prebiotic than those with LDF intakes. Future studies aiming to modulate the gut microbiota and improve host health, using an inulin-type fructan prebiotic, should take habitual dietary fibre intake into account.
Journal Article
Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties
by
Pouillart, Philippe R.
,
Cayzeele, Amélie
,
Dugenet, Yann
in
acetates
,
Adolescent
,
alpha-glucosidase
2012
The purpose of the present study was to establish the prebiotic effect of a new xylo-oligosaccharide (XOS) and of an inulin-and-XOS mixture (INU–XOS) and to determine their effect on endotoxaemia (lipopolysaccharides (LPS)) and immune parameters. In this randomised, parallel, placebo-controlled, double-blind study, sixty healthy volunteers were randomly assigned to three groups, receiving either 5 g XOS, INU–XOS (3 g inulin +1 g XOS) or an equivalent weight of wheat maltodextrin (placebo) during 4 weeks. Faecal samples were collected to assess the effects of these products on microbiota, as well as SCFA composition, enzymatic activities and secretory IgA production. Circulating LPS was measured in plasma samples, and whole blood was incubated with LPS to measure cytokine expression. Consumption of XOS alone increased the faecal concentrations of Bifidobacterium and butyrate and activities of α-glucosidase and β-glucuronidase, while decreasing the concentrations of acetate and p-cresol. Consumption of XOS in combination with inulin did not decrease the concentrations of acetate and p-cresol, but increased in addition the faecal concentrations of total SCFA and propionate. Furthermore, consumption of XOS in combination with inulin decreased LPS concentrations in blood and attenuated LPS-induced increases in gene expression in IL-1β and LPS-induced decreases in gene expression in IL-13 in blood. In conclusion, consumption of XOS alone or in combination with inulin results in beneficial albeit different changes in the intestinal microbiome on a high-fat diet. In addition, consumption of XOS in combination with inulin attenuates the proinflammatory effects of a high-fat diet in the blood of healthy subjects.
Journal Article
Prebiotic Dietary Fiber and Gut Health: Comparing the in Vitro Fermentations of Beta-Glucan, Inulin and Xylooligosaccharide
by
Gould, Trevor
,
Carlson, Justin
,
Erickson, Jennifer
in
Actinobacteria - isolation & purification
,
Adult
,
Bacteroidetes - isolation & purification
2017
Prebiotic dietary fiber supplements are commonly consumed to help meet fiber recommendations and improve gastrointestinal health by stimulating beneficial bacteria and the production of short-chain fatty acids (SCFAs), molecules beneficial to host health. The objective of this research project was to compare potential prebiotic effects and fermentability of five commonly consumed fibers using an in vitro fermentation system measuring changes in fecal microbiota, total gas production and formation of common SCFAs. Fecal donations were collected from three healthy volunteers. Materials analyzed included: pure beta-glucan, Oatwell (commercially available oat-bran containing 22% oat β-glucan), xylooligosaccharides (XOS), WholeFiber (dried chicory root containing inulin, pectin, and hemi/celluloses), and pure inulin. Oatwell had the highest production of propionate at 12 h (4.76 μmol/mL) compared to inulin, WholeFiber and XOS samples (p < 0.03). Oatwell’s effect was similar to those of the pure beta-glucan samples, both samples promoted the highest mean propionate production at 24 h. XOS resulted in a significant increase in the genus Bifidobacterium after 24 h of fermentation (0 h:0.67 OTUs (operational taxonomic unit); 24 h:5.22 OTUs; p = 0.038). Inulin and WholeFiber increased the beneficial genus Collinsella, consistent with findings in clinical studies. All analyzed compounds were fermentable and promoted the formation of beneficial SCFAs.
Journal Article
Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women
2013
Objective To highlight the contribution of the gut microbiota to the modulation of host metabolism by dietary inulin-type fructans (ITF prebiotics) in obese women. Methods A double blind, placebo controlled, intervention study was performed with 30 obese women treated with ITF prebiotics (inulin/oligofructose 50/50 mix; n=15) or placebo (maltodextrin; n=15) for 3 months (16 g/day). Blood, faeces and urine sampling, oral glucose tolerance test, homeostasis model assessment and impedancemetry were performed before and after treatment. The gut microbial composition in faeces was analysed by phylogenetic microarray and qPCR analysis of 16S rDNA. Plasma and urine metabolic profiles were analysed by 1H-NMR spectroscopy. Results Treatment with ITF prebiotics, but not the placebo, led to an increase in Bifidobacterium and Faecalibacterium prausnitzii; both bacteria negatively correlated with serum lipopolysaccharide levels. ITF prebiotics also decreased Bacteroides intestinalis, Bacteroides vulgatus and Propionibacterium, an effect associated with a slight decrease in fat mass and with plasma lactate and phosphatidylcholine levels. No clear treatment clustering could be detected for gut microbial analysis or plasma and urine metabolomic profile analyses. However, ITF prebiotics led to subtle changes in the gut microbiota that may importantly impact on several key metabolites implicated in obesity and/or diabetes. Conclusions ITF prebiotics selectively changed the gut microbiota composition in obese women, leading to modest changes in host metabolism, as suggested by the correlation between some bacterial species and metabolic endotoxaemia or metabolomic signatures.
Journal Article
Modulation of the human gut microbiota by dietary fibres occurs at the species level
by
Vermeiren, Joan
,
Walker, Alan W.
,
Bosscher, Douwina
in
Bacteria
,
Bacteroides - growth & development
,
Bacteroides - isolation & purification
2016
Background
Dietary intake of specific non-digestible carbohydrates (including prebiotics) is increasingly seen as a highly effective approach for manipulating the composition and activities of the human gut microbiota to benefit health. Nevertheless, surprisingly little is known about the global response of the microbial community to particular carbohydrates. Recent
in vivo
dietary studies have demonstrated that the species composition of the human faecal microbiota is influenced by dietary intake. There is now potential to gain insights into the mechanisms involved by using
in vitro
systems that produce highly controlled conditions of pH and substrate supply.
Results
We supplied two alternative non-digestible polysaccharides as energy sources to three different human gut microbial communities in anaerobic, pH-controlled continuous-flow fermentors. Community analysis showed that supply of apple pectin or inulin resulted in the highly specific enrichment of particular bacterial operational taxonomic units (OTUs; based on 16S rRNA gene sequences). Of the eight most abundant
Bacteroides
OTUs detected, two were promoted specifically by inulin and six by pectin. Among the Firmicutes,
Eubacterium eligens
in particular was strongly promoted by pectin, while several species were stimulated by inulin. Responses were influenced by pH, which was stepped up, and down, between 5.5, 6.0, 6.4 and 6.9 in parallel vessels within each experiment. In particular, several experiments involving downshifts to pH 5.5 resulted in
Faecalibacterium prausnitzii
replacing
Bacteroides
spp. as the dominant sequences observed. Community diversity was greater in the pectin-fed than in the inulin-fed fermentors, presumably reflecting the differing complexity of the two substrates.
Conclusions
We have shown that particular non-digestible dietary carbohydrates have enormous potential for modifying the gut microbiota, but these modifications occur at the level of individual strains and species and are not easily predicted a priori. Furthermore, the gut environment, especially pH, plays a key role in determining the outcome of interspecies competition. This makes it crucial to put greater effort into identifying the range of bacteria that may be stimulated by a given prebiotic approach. Both for reasons of efficacy and of safety, the development of prebiotics intended to benefit human health has to take account of the highly individual species profiles that may result.
Journal Article