Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
207 result(s) for "KATP Channels - genetics"
Sort by:
GLP-1 Receptor Antagonist Exendin-(9-39) Elevates Fasting Blood Glucose Levels in Congenital Hyperinsulinism Owing to Inactivating Mutations in the ATP-Sensitive K+ Channel
Infants with congenital hyperinsulinism owing to inactivating mutations in the K(ATP) channel (K(ATP)HI) who are unresponsive to medical therapy will require pancreatectomy to control the hypoglycemia. In preclinical studies, we showed that the GLP-1 receptor antagonist exendin-(9-39) suppresses insulin secretion and corrects fasting hypoglycemia in SUR-1(-/-) mice. The aim of this study was to examine the effects of exendin-(9-39) on fasting blood glucose in subjects with K(ATP)HI. This was a randomized, open-label, two-period crossover pilot clinical study. Nine subjects with K(ATP)HI received either exendin-(9-39) or vehicle on two different days. The primary outcome was blood glucose; secondary outcomes were insulin, glucagon, and GLP-1. In all subjects, mean nadir blood glucose and glucose area under the curve were significantly increased by exendin-(9-39). Insulin-to-glucose ratios were significantly lower during exendin-(9-39) infusion compared with vehicle. Fasting glucagon and intact GLP-1 were not affected by treatment. In addition, exendin-(9-39) significantly inhibited amino acid-stimulated insulin secretion in pancreatic islets isolated from neonates with K(ATP)HI. Our findings have two important implications: 1) GLP-1 and its receptor play a role in the regulation of fasting glycemia in K(ATP)HI; and 2) the GLP-1 receptor may be a therapeutic target for the treatment of children with K(ATP)HI.
Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo
Epidemiological studies show that patients with type 2 diabetes (T2DM) and individuals with a diabetes-independent elevation in blood glucose have an increased risk for developing dementia, specifically dementia due to Alzheimer's disease (AD). These observations suggest that abnormal glucose metabolism likely plays a role in some aspects of AD pathogenesis, leading us to investigate the link between aberrant glucose metabolism, T2DM, and AD in murine models. Here, we combined two techniques – glucose clamps and in vivo microdialysis – as a means to dynamically modulate blood glucose levels in awake, freely moving mice while measuring real-time changes in amyloid-β (Aβ), glucose, and lactate within the hippocampal interstitial fluid (ISF). In a murine model of AD, induction of acute hyperglycemia in young animals increased ISF Aβ production and ISF lactate, which serves as a marker of neuronal activity. These effects were exacerbated in aged AD mice with marked Aβ plaque pathology. Inward rectifying, ATP-sensitive potassium (K(ATP)) channels mediated the response to elevated glucose levels, as pharmacological manipulation of K(ATP) channels in the hippocampus altered both ISF Aβ levels and neuronal activity. Taken together, these results suggest that K(ATP) channel activation mediates the response of hippocampal neurons to hyperglycemia by coupling metabolism with neuronal activity and ISF Aβ levels.
Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio
The ATP:ADP ratio is a critical parameter of cellular energy status that regulates many metabolic activities. Here we report an optimized genetically encoded fluorescent biosensor, PercevalHR, that senses the ATP:ADP ratio. PercevalHR is tuned to the range of intracellular ATP:ADP expected in mammalian cells, and it can be used with one- or two-photon microscopy in live samples. We use PercevalHR to visualize activity-dependent changes in ATP:ADP when neurons are exposed to multiple stimuli, demonstrating that it is a sensitive reporter of physiological changes in energy consumption and production. We also use PercevalHR to visualize intracellular ATP:ADP while simultaneously recording currents from ATP-sensitive potassium (K ATP ) channels in single cells, showing that PercevalHR enables the study of coordinated variation in ATP:ADP and K ATP channel open probability in intact cells. With its ability to monitor changes in cellular energetics within seconds, PercevalHR should be a versatile tool for metabolic research. The ratio between ATP and ADP within the cell is a key indicator of metabolic status. Tantama et al . describe a ratiometric, genetically encoded fluorescent sensor for ATP:ADP that is now optimized for mammalian cells, and demonstrate that it can detect physiological changes in energy consumption and production.
Glibenclamide reverses cardiovascular abnormalities of Cantu syndrome driven by KATP channel overactivity
Cantu syndrome (CS) is a complex disorder caused by gain-of-function (GoF) mutations in ABCC9 and KCNJ8, which encode the SUR2 and Kir6.1 subunits, respectively, of vascular smooth muscle (VSM) KATP channels. CS includes dilated vasculature, marked cardiac hypertrophy, and other cardiovascular abnormalities. There is currently no targeted therapy, and it is unknown whether cardiovascular features can be reversed once manifest. Using combined transgenic and pharmacological approaches in a knockin mouse model of CS, we have shown that reversal of vascular and cardiac phenotypes can be achieved by genetic downregulation of KATP channel activity specifically in VSM, and by chronic administration of the clinically used KATP channel inhibitor, glibenclamide. These findings demonstrate that VSM KATP channel GoF underlies CS cardiac enlargement and that CS-associated abnormalities are reversible, and provide evidence of in vivo efficacy of glibenclamide as a therapeutic agent in CS.
α-cell glucokinase suppresses glucose-regulated glucagon secretion
Glucagon secretion by pancreatic α-cells is triggered by hypoglycemia and suppressed by high glucose levels; impaired suppression of glucagon secretion is a hallmark of both type 1 and type 2 diabetes. Here, we show that α-cell glucokinase ( Gck ) plays a role in the control of glucagon secretion. Using mice with α-cell-specific inactivation of Gck ( αGckKO mice), we find that glucokinase is required for the glucose-dependent increase in intracellular ATP/ADP ratio and the closure of K ATP channels in α-cells and the suppression of glucagon secretion at euglycemic and hyperglycemic levels. αGckKO mice display hyperglucagonemia in the fed state, which is associated with increased hepatic gluconeogenic gene expression and hepatic glucose output capacity. In adult mice, fed hyperglucagonemia is further increased and glucose intolerance develops. Thus, glucokinase governs an α-cell metabolic pathway that suppresses secretion at or above normoglycemic levels; abnormal suppression of glucagon secretion deregulates hepatic glucose metabolism and, over time, induces a pre-diabetic phenotype. Glucagon secretion is promoted during hypoglycemia and inhibited by increased glucose levels. Here, Basco et al. show that glucokinase suppresses glucose-regulated glucagon secretion by modulating the intracellular ATP/ADP ratio and the closure of K ATP channels in α-cells.
AI-based discovery and cryoEM structural elucidation of a K ATP channel pharmacochaperone
Pancreatic K channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the K channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used K channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for K trafficking-impaired CHI is hindered by high affinity binding, which limits functional recovery of rescued channels. Recent structural studies of K channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known K pharmacochaperones bind. The structural knowledge provides a framework for discovering K channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on K channel trafficking mutations. Aekatperone reversibly inhibits K channel activity with a half-maximal inhibitory concentration (IC ) ~9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of K bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a K pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by K trafficking defects.
Expression and influence of KATP in umbilical artery smooth muscle cells of patients with hypertensive disorders of pregnancy
The objective of this study is to investigate the expression and influence of adenosine triphosphate-sensitive potassium channel (KATP) in human umbilical arterial smooth muscle cells (HUASMCs) of patients with hypertensive disorders of pregnancy (HDP). Western blotting was used to detect the protein expression levels of KATP inwardly rectifying potassium channel (Kir)6.1 and sulphonylurea receptor (SUR)2B subunits in HUASMCs from patients with normal parturients (NP), gestational hypertension (GH), chronic hypertension (CH), preeclampsia (PE) and chronic hypertension with superimposed preeclampsia (CHSP), respectively. There was no significant difference in the protein expression of Kir6.1 subunit in NP group, GH group, CH group, PE group and CHSP group ( P  > 0.05). The protein expression of SUR2B subunit was gradually decreased in NP group, GH group, CH group, PE group and CHSP group, with statistically significant difference among the groups ( P  < 0.05). The altered expression level of KATP SUR2B subunit may be involved in the pathogenesis of HDP. The severity of HDP may be related to the degree of decrease of SUR2B subunit.
Vascular K ATP channel structural dynamics reveal regulatory mechanism by Mg-nucleotides
Vascular K ATP channels formed by the potassium channel Kir6.1 and its regulatory protein SUR2B maintain blood pressure in the physiological range. Overactivity of the channel due to genetic mutations in either Kir6.1 or SUR2B causes severe cardiovascular pathologies known as Cantú syndrome. The cryogenic electron microscopy structures of the vascular K ATP channel reported here show multiple, dynamically related conformations of the regulatory subunit SUR2B. Molecular dynamics simulations reveal the negatively charged ED-domain in SUR2B, a stretch of 15 glutamate (E) and aspartate (D) residues not previously resolved, play a key MgADP-dependent role in mediating interactions at the interface between the SUR2B and Kir6.1 subunits. Our findings provide a mechanistic understanding of how channel activity is regulated by intracellular MgADP. Vascular tone is dependent on smooth muscle K ATP channels comprising pore-forming Kir6.1 and regulatory SUR2B subunits, in which mutations cause Cantú syndrome. Unique among K ATP isoforms, they lack spontaneous activity and require Mg-nucleotides for activation. Structural mechanisms underlying these properties are unknown. Here, we determined cryogenic electron microscopy structures of vascular K ATP channels bound to inhibitory ATP and glibenclamide, which differ informatively from similarly determined pancreatic K ATP channel isoform (Kir6.2/SUR1). Unlike SUR1, SUR2B subunits adopt distinct rotational “propeller” and “quatrefoil” geometries surrounding their Kir6.1 core. The glutamate/aspartate-rich linker connecting the two halves of the SUR-ABC core is observed in a quatrefoil-like conformation. Molecular dynamics simulations reveal MgADP-dependent dynamic tripartite interactions between this linker, SUR2B, and Kir6.1. The structures captured implicate a progression of intermediate states between MgADP-free inactivated, and MgADP-bound activated conformations wherein the glutamate/aspartate-rich linker participates as mobile autoinhibitory domain, suggesting a conformational pathway toward K ATP channel activation.
Hypoxia induces the translocation of glucose transporter 1 to the plasma membrane in vascular endothelial cells
Glucose uptake and adenosine triphosphate (ATP) generation are important for the survival and growth of endothelial cells. An increase of glucose uptake under hypoxia was previously shown to be associated with the increased expression of glucose transporters (GLUTs). However, the regulation of GLUT trafficking to the cell surface has not been examined in detail. Here, we report the characterization of GLUT1 translocation to the plasma membrane during hypoxia in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were exposed to hypoxia (1% O2) for 12 h, which significantly induced GLUT1 expression and translocation to the plasma membrane. GLUT1 translocation was associated with a decrease of intracellular ATP by hypoxia. Decreasing ATP levels with antimycin-A and 2-deoxyglucose induced GLUT1 translocation under normoxia. The induction of hypoxia-inducible factor-1α under normoxia did not influence the cell surface expression of GLUT1 or cellular ATP concentration. Interestingly, the translocation of GLUT1 induced by hypoxia was inhibited by the ATP-sensitive potassium (KATP) channel inhibitor glibenclamide, while the mitochondrial KATP channel inhibitor 5-HD did not influence GLUT1 translocation during hypoxia. These observations indicate that a decrease of intracellular ATP triggers GLUT1 translocation to the plasma membrane and is mediated by KATP channels, which would contribute to glucose uptake in HUVECs during hypoxia.
A heme-binding domain controls regulation of ATP-dependent potassium channels
Heme iron has many and varied roles in biology. Most commonly it binds as a prosthetic group to proteins, and it has been widely supposed and amply demonstrated that subtle variations in the protein structure around the heme, including the heme ligands, are used to control the reactivity of the metal ion. However, the role of heme in biology now appears to also include a regulatory responsibility in the cell; this includes regulation of ion channel function. In this work, we show that cardiac KATP channels are regulated by heme. We identify a cytoplasmic heme-binding CXXHX16H motif on the sulphonylurea receptor subunit of the channel, and mutagenesis together with quantitative and spectroscopic analyses of heme-binding and single channel experiments identified Cys628 and His648 as important for heme binding. We discuss the wider implications of these findings and we use the information to present hypotheses for mechanisms of heme-dependent regulation across other ion channels.