Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
14
result(s) for
"Ketocholesterols - toxicity"
Sort by:
Argan Oil-Mediated Attenuation of Organelle Dysfunction, Oxidative Stress and Cell Death Induced by 7-Ketocholesterol in Murine Oligodendrocytes 158N
by
Martine, Lucy
,
This work was supported by grants from: University of Bourgogne (Dijon, France); University of Monastir (Monastir, Tunisia); Aides et Services à Domicile (ASSAD) (Louhans, France) and the Association Bourguignonne pour les Aplications en Sciences de l’Information en Médecine (ABASIM, Dijon, France). This work was supported by the Action Intégrée of the Comité Mixte Inter-Universitaire Franco-Marocain (CMIFM, MA/14/310) from the Projet Hubert Curien (PHC) Volubilis/Toubkal program, the Ministère de l’Enseignement Supérieur and the Centre National Pour la Recherche Scientifique et Technique (CNRST, Morocco), the projet PPR from the (CNRST, Morocco), the Ministère des Affaires Etrangères, the Conseil Régional de Bourgogne, and the University of Bourgogne. We also thank Philip Bastable for English corrections (University Hospital, Dijon, France)
,
Nasser, Boubker
in
alpha-Tocopherol - pharmacology
,
Animals
,
Antioxidants - pharmacology
2017
Argan oil is widely used in Morocco in traditional medicine. Its ability to treat cardiovascular diseases is well-established. However, nothing is known about its effects on neurodegenerative diseases, which are often associated with increased oxidative stress leading to lipid peroxidation and the formation of 7-ketocholesterol (7KC) resulting from cholesterol auto-oxidation. As 7KC induces oxidative stress, inflammation and cell death, it is important to identify compounds able to impair its harmful effects. These compounds may be either natural or synthetic molecules or mixtures of molecules such as oils. In this context: (i) the lipid profiles of dietary argan oils from Berkane and Agadir (Morocco) in fatty acids, phytosterols, tocopherols and polyphenols were determined by different chromatographic techniques; and (ii) their anti-oxidant and cytoprotective effects in 158N murine oligodendrocytes cultured with 7KC (25-50 mu M; 24 h) without and with argan oil (0.1% v/v) or -tocopherol (400 mu M, positive control) were evaluated with complementary techniques of cellular and molecular biology. Among the unsaturated fatty acids present in argan oils, oleate (C18:1 n-9) and linoleate (C18:1 n-6) were the most abundant; the highest quantities of saturated fatty acids were palmitate (C16:0) and stearate (C18:0). Several phytosterols were found, mainly schottenol and spinasterol (specific to argan oil), cycloartenol, beta-amyrin and citrostadienol alpha- and gamma-tocopherols were also present. Tyrosol and protocatechic acid were the only polyphenols detected. Argan and extra virgin olive oils have many compounds in common, principally oleate and linoleate, and tocopherols. Kit Radicaux Libres (KRL) and ferric reducing antioxidant power (FRAP) tests showed that argan and extra virgin olive oils have anti-oxidant properties. Argan oils were able to attenuate the cytotoxic effects of 7KC on 158N cells: loss of cell adhesion, cell growth inhibition, increased plasma membrane permeability, mitochondrial, peroxisomal and lysosomal dysfunction, and the induction of oxiapoptophagy (OXIdation + APOPTOsis + autoPHAGY). Altogether, our data obtained in 158N oligodendrocytes provide evidence that argan oil is able to counteract the toxic effects of 7KC on nerve cells, thus suggesting that some of its compounds could prevent or mitigate neurodegenerative diseases to the extent that they are able to cross the blood-brain barrier.
Journal Article
Effect of Ergothioneine on 7-Ketocholesterol-Induced Endothelial Injury
2021
Ergothioneine (ET) is a naturally occurring antioxidant that is synthesized by non-yeast fungi and certain bacteria. ET is not synthesized by animals, including humans, but is avidly taken up from the diet, especially from mushrooms. In the current study, we elucidated the effect of ET on the hCMEC/D3 human brain endothelial cell line. Endothelial cells are exposed to high levels of the cholesterol oxidation product, 7-ketocholesterol (7KC), in patients with cardiovascular disease and diabetes, and this process is thought to mediate pathological inflammation. 7KC induces a dose-dependent loss of cell viability and an increase in apoptosis and necrosis in the endothelial cells. A relocalization of the tight junction proteins, zonula occludens-1 (ZO-1) and claudin-5, towards the nucleus of the cells was also observed. These effects were significantly attenuated by ET. In addition, 7KC induces marked increases in the mRNA expression of pro-inflammatory cytokines, IL-1β IL-6, IL-8, TNF-α and cyclooxygenase-2 (COX2), as well as COX2 enzymatic activity, and these were significantly reduced by ET. Moreover, the cytoprotective and anti-inflammatory effects of ET were significantly reduced by co-incubation with an inhibitor of the ET transporter, OCTN1 (VHCL). This shows that ET needs to enter the endothelial cells to have a protective effect and is unlikely to act via extracellular neutralizing of 7KC. The protective effect on inflammation in brain endothelial cells suggests that ET might be useful as a nutraceutical for the prevention or management of neurovascular diseases, such as stroke and vascular dementia. Moreover, the ability of ET to cross the blood-brain barrier could point to its usefulness in combatting 7KC that is produced in the CNS during neuroinflammation, e.g. after excitotoxicity, in chronic neurodegenerative diseases, and possibly COVID-19-related neurologic complications.
Journal Article
Interactions between cell death induced by statins and 7‐ketocholesterol in rabbit aorta smooth muscle cells
2008
Background and purpose: 7‐Ketocholesterol, an oxysterol present in atherosclerotic lesions, induces smooth muscle cell (SMC) death, thereby destabilizing plaques. Statins protect patients from myocardial infarction, though they induce SMC apoptosis. We investigated whether statins and 7‐ketocholesterol exerted additive cell death effects. Experimental approach: Cultured rabbit aorta SMCs (passage 2–6) were exposed to 7‐ketocholesterol with or without fluvastatin, simvastatin or pravastatin. Uptake of neutral red (NR), monolayer protein, cleavage of the pan‐caspase substrate Asp‐Glu‐Val‐Asp‐rhodamine110, cell morphology (light and electron microscopy) and processing of microtubule‐associated protein 1 light chain 3 (LC3, immunoblot) were determined. Key results: NR uptake declined upon 18 h exposure to 25 μM 7‐ketocholesterol (−41±3%, n=13), 100 μM fluvastatin (−59%) or 30–100 μM simvastatin (−28 to −74%). Oxysterol and high statin concentrations exerted additive effects, but lower concentrations (fluvastatin 10–30 μM, simvastatin 1–10 μM) partly reversed viability loss. 7‐Ketocholesterol caused intense cytoplasmic vacuolization, processing of LC3‐I to LC3‐II, but little caspase activation (increase 29.5%). Fluvastatin (10–100 μM, 70–545% increase) and simvastatin (3–100 μM 43–322% increase) induced caspase activation without LC3 processing, but failed to activate caspases in 7‐ketocholesterol‐treated SMCs. Pravastatin up to 100 μM was always inactive. Conclusions and implications: 7‐Ketocholesterol caused SMC death, mainly via autophagic vesicle formation with LC3 processing, whereas lipophilic statins evoked SMC apoptosis. Cell death following 7‐ketocholesterol and low statin concentrations were not additive, presumably because the autophagic process interfered with statin‐induced caspase activation. This further illustrates that drug effects in normal SMCs are not necessarily predictive for activities in atherosclerotic settings. British Journal of Pharmacology (2008) 154, 1236–1246; doi:10.1038/bjp.2008.181; published online 12 May 2008
Journal Article
Quercetin-3-O-(2″-galloyl)-α-L-rhamnopyranoside attenuates cholesterol oxidation product-induced apoptosis by suppressing NF-κB-mediated cell death process in differentiated PC12 cells
by
Lee, Da Hee
,
Lee, Chung Soo
,
Nam, Yoon Jeong
in
Animals
,
Apoptosis - drug effects
,
Apoptosis Regulatory Proteins - metabolism
2015
Cholesterol oxidation products are suggested to be involved in neuronal cell degeneration. We examined the preventive effect of quercetin-3-O-(2″-galloyl)-α-L-rhamnopyranoside (QGR), a quercetin derivative, on the cholesterol oxidation product-induced neuronal cell death using differentiated PC12 cells in relation to nuclear factor (NF)-κB-mediated apoptotic process. 7-Ketocholesterol and 25-hydroxycholesterol induced a decrease in the levels of BH3 interacting-domain death agonist (Bid) and B cell lymphoma 2 (Bcl-2), increase in the levels of Bcl-2-associated X protein (Bax) and p53, loss of the mitochondrial transmembrane potential, cytochrome
c
release, activation of caspases, and cleavage of poly(ADP-ribose) polymerase 1 (PARP-1). 7-Ketocholesterol induced increase in cytosolic and nuclear NF-κB p65, nuclear phospho-NF-κB p65, cytosolic NF-κB p50, and cytosolic phospho-IκB-α levels. The addition of QGR,
N
-acetyl cysteine, or Bay 11-7085 attenuated the cholesterol oxidation product-induced changes in the apoptosis-related protein levels, activation of NF-κB, formation of reactive oxygen species, depletion of glutathione (GSH), nuclear damage, and cell death. The results show that QGR may attenuate the cholesterol oxidation product-induced apoptosis in PC12 cells by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways that is mediated by NF-κB activation. The preventive effect appears to be associated with the inhibitory effect on the formation of reactive oxygen species and depletion of GSH.
Journal Article
Glycyrrhizin Prevents 7-Ketocholesterol Toxicity Against Differentiated PC12 Cells by Suppressing Mitochondrial Membrane Permeability Change
by
Hong, Ki Moo
,
Youn, Young Chul
,
Kim, Young KI
in
Animals
,
Anti-Inflammatory Agents, Non-Steroidal - pharmacology
,
Apoptosis - drug effects
2009
Defects in mitochondrial function participate in the induction of neuronal cell injury. In neurodegenerative conditions, oxidative products of cholesterol are elevated and oxysterols seem to be implicated in neuronal cell death. The present work was designed to study the inhibitory effect of licorice compounds glycyrrhizin and 18β-glycyrrhetinic acid against the toxicity of 7-ketocholesterol in relation to the mitochondria-mediated cell death process. 7-Ketocholesterol induced the nuclear damage, loss of the mitochondrial transmembrane potential, increase in the cytosolic Bax and cytochrome
c
levels, caspase-3 activation and cell death in differentiated PC12 cells. Glycyrrhizin and 18β-glycyrrhetinic acid prevented the 7-ketocholesterol-induced mitochondrial damage, leading to caspase-3 activation and cell death. The results obtained show that glycyrrhizin and 18β-glycyrrhetinic acid may prevent the 7-ketocholesterol-induced neuronal cell damage by suppressing changes in the mitochondrial membrane permeability.
Journal Article
Tyrosine Kinase Inhibitor AG126 Reduces 7-Ketocholesterol-Induced Cell Death by Suppressing Mitochondria-Mediated Apoptotic Process
2010
The preventive effect of tyrosine kinase inhibitor AG126 against the 7-ketocholesterol toxicity was investigated in relation to the mitochondria-mediated cell death process. 7-Ketocholesterol induced the nuclear damage, the mitochondrial membrane permeability changes, the formation of reactive oxygen species and the depletion of GSH, which leads to cell death in differentiated PC12 cells. Tyrphostin AG126 significantly attenuated the 7-ketocholesterol-induced decrease in cytosolic Bid and Bcl-2 levels, increase in cytosolic pro-apoptotic Bax levels, mitochondrial membrane potential loss, cytochrome
c
release and subsequent caspase-3 activation. The inhibitory effect of tyrphostin AG126 may be supported by the inhibitory effect on another oxysterol 25-hydroxycholesterol-induced cell death. The results show that tyrphostin AG126 may prevent the 7-ketocholesterol toxicity by suppressing the mitochondrial membrane permeability change that leads to the cytochrome
c
release and caspase-3 activation. The preventive effect seems to be associated with the inhibitory effect on the formation of reactive oxygen species and the depletion of GSH.
Journal Article
Microbial degradation of 7-ketocholesterol
by
Mathieu, Jacques
,
Alvarez, Pedro J. J
,
Schloendorn, John
in
Activated sludge
,
Alzheimer disease
,
Alzheimer's disease
2008
7-Ketocholesterol (7KC) is an oxidized derivative of cholesterol suspected to be involved in the pathogenesis of atherosclerosis and possibly Alzheimer's disease. While some oxysterols are important biological mediators, 7KC is generally cytotoxic and interferes with cellular homeostasis. Despite recent interest in preventing the accumulation of 7KC in a variety of matrices to avoid adverse biological effects, its microbial degradation has not been previously addressed in the peer-reviewed literature. Thus, the rate and extent of biodegradation of this oxysterol was investigated to bridge this gap. A wide variety of bacteria isolated from soil or activated sludge, including Proteobacterium Y-134, Sphingomonas sp. JEM-1, Nocardia nova, Rhodococcus sp. RHA1, and Pseduomonas aeruginosa, utilized 7KC as a sole carbon and energy source, resulting in its mineralization. Nocardia nova, which is known to produce biosurfactants, was the fastest degrader. This study supports the notion that microbial catabolic enzymes could be exploited to control 7KC levels in potential biotechnological applications for agricultural, environmental, or medical use.
Journal Article
Differential Modulation of 7-Ketocholesterol Toxicity Against PC12 Cells by Calmodulin Antagonists and Ca2+ Channel Blockers
by
Lee, Chung Soo
,
Han, Eun Sook
,
Park, Woo Jae
in
Animals
,
Apoptosis - drug effects
,
Calcium - physiology
2007
The present study assessed the influence of intracellular Ca2+ and calmodulin against the neurotoxicity of oxysterol 7-ketocholesterol in relation to the mitochondria-mediated cell death process and oxidative stress in PC12 cells. Calmodulin antagonists calmidazolium and W-7 prevented the 7-ketocholesterol-induced mitochondrial damage, leading to caspase-3 activation and cell death, whereas Ca2+ channel blocker nicardipine, mitochondrial Ca2+ uptake inhibitor ruthenium red, and cell permeable Ca2+ chelator BAPTA-AM did not reduce it. Exposure of PC12 cells to 7-ketocholesterol caused elevation of intracellular Ca2+ levels. Unlike cell injury, calmodulin antagonists, nicardipine, and BAPTA-AM prevented the 7-ketocholesterol-induced elevations of intracellular Ca2+ levels. The results show that the cytotoxicity of 7-ketocholesterol seems to be modulated by calmodulin rather than changes in intracellular Ca2+ levels. Calmodulin antagonists may prevent the cytotoxicity of 7-ketocholesterol by suppressing the mitochondrial permeability transition formation, which is associated with the increased formation of reactive oxygen species and the depletion of GSH.
Journal Article
In vitro folate supplementation alleviates oxidative stress, mitochondria-associated death signalling and apoptosis induced by 7-ketocholesterol
by
Lu, Y.-F.
,
Yaong, H.-C.
,
Huang, R.-F. S.
in
7-Ketocholesterol
,
Ageing, cell death
,
Antibiotics
2004
Folate has recently been proposed as a new antioxidant. Folate supplementation may have a protective effect in counteracting oxidant-induced apoptotic damage. The present studies were undertaken to examine whether there is a direct link between folate levels, antioxidant capability and reduced apoptotic damage. Using an in vitro cellular model of 7-ketocholesterol (KC)-induced apoptosis, U937 cells were pre-cultured with a folate-deficient medium supplemented with various levels of folate (2–1500μmol/l) before treatment with 7-KC. Apoptotic markers, mitochondria-associated death signals and levels of reactive oxygen species were assayed. After treatment with 7-KC for 30h, low and high levels of folate supplementation significantly (P<0.05) reduced nuclear DNA loss. Only high levels of folate supplementation (>1000μmol/l) were effective in counteracting 7-KC-promoted apoptotic membrane phosphatidylserine exposure and DNA laddering. The attenuation of 7-KC-induced apoptotic damage by high-dose folate supplementation coincided with a partial normalization of mitochondria membrane potential dissipation, a suppression of cytochrome c release and an inhibition of procaspase 3 activation. The prevention of mitochondrial dysfunctions and apoptotic processes was associated with antioxidant actions of high-dose folate by a marked scavenging of intracellular superoxide. Collectively, our present results demonstrate that in vitro folate supplementation exerts differentially protective effects against 7-KC-induced damage. High-dose supplementation alleviates oxidative stress, mitochondria-associated death signalling and apoptosis induced by 7-KC. However, the in vivo relevance is not clear and requires further study.
Journal Article
Oxysterol-Induced Toxicity in R28 and ARPE-19 Cells
by
Aoki, Annette M.
,
Nesburn, Anthony B.
,
Ong, John M.
in
Animals
,
Biological and medical sciences
,
Cell Line
2003
Studies have shown an intimate relationship between cholesterol and retinal diseases; we examined the effects of cholesterol oxides on cultured cells. Using the rat retinal precursor cell line R28 and the human RPE cell line ARPE-19, we investigated the potential cytotoxicity of cholesterol oxides. Cultured R28 and ARPE-19 cells were treated with either 25-hydroxycholesterol and 7-ketocholesterol (0-50 microg/ml). Cell viability was determined by the WST-1 colorimetric assay. Production of reactive oxygen intermediate (ROI) was assessed by a fluorescent probe-based assay (2',7'-dichlorodihydrofluorescein diacetate [H2DCFDA]). To detect the presence of apoptosis, DNA fragmentation gel analysis and Hoescht nuclear staining were performed. Both cholesterol oxides tested were toxic in a time- and dose-dependent fashion to the two cell lines used in this study. Treatment of R28 cells with either 25-hydroxycholesterol or 7-ketocholesterol at a concentration of 25 micro/ml resulted in greater than 50% loss of cell viability after 24 h. ARPE-19 cells were slightly less affected, with a loss of cell viability of approximately 20% and 40% after 24 h-exposure of 25-hydroxycholesterol and 7-ketocholesterol, respectively. DNA fragmentation and chromatin condensation demonstrated apoptotic events occurring in 7-ketocholesterol-treated cells. The fluorescent assay for ROI production showed that after an hour of exposure to 7-ketocholesterol, R28 cells responded with increased levels of ROIs, whereas no immediate production of ROIs were detected with treated ARPE-19 cells. These in vitro findings provide evidence that cholesterol oxides can directly damage cultured retinal and RPE cells. The oxysterol-induced oxidative stress in these cells may be a factor in the pathology of retinal degenerative diseases.
Journal Article