Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
38
result(s) for
"Lab-On-A-Chip Devices - economics"
Sort by:
Biomedical microfluidic devices by using low-cost fabrication techniques: A review
by
Minas, Graça
,
Lima, Rui
,
Catarino, Susana O.
in
Biomedical engineering
,
Biomedical microdevices
,
Biomedical Technology - economics
2016
One of the most popular methods to fabricate biomedical microfluidic devices is by using a soft-lithography technique. However, the fabrication of the moulds to produce microfluidic devices, such as SU-8 moulds, usually requires a cleanroom environment that can be quite costly. Therefore, many efforts have been made to develop low-cost alternatives for the fabrication of microstructures, avoiding the use of cleanroom facilities. Recently, low-cost techniques without cleanroom facilities that feature aspect ratios more than 20, for fabricating those SU-8 moulds have been gaining popularity among biomedical research community. In those techniques, Ultraviolet (UV) exposure equipment, commonly used in the Printed Circuit Board (PCB) industry, replaces the more expensive and less available Mask Aligner that has been used in the last 15 years for SU-8 patterning. Alternatively, non-lithographic low-cost techniques, due to their ability for large-scale production, have increased the interest of the industrial and research community to develop simple, rapid and low-cost microfluidic structures. These alternative techniques include Print and Peel methods (PAP), laserjet, solid ink, cutting plotters or micromilling, that use equipment available in almost all laboratories and offices. An example is the xurography technique that uses a cutting plotter machine and adhesive vinyl films to generate the master moulds to fabricate microfluidic channels. In this review, we present a selection of the most recent lithographic and non-lithographic low-cost techniques to fabricate microfluidic structures, focused on the features and limitations of each technique. Only microfabrication methods that do not require the use of cleanrooms are considered. Additionally, potential applications of these microfluidic devices in biomedical engineering are presented with some illustrative examples.
Journal Article
LEGO® as a versatile platform for building reconfigurable low-cost lab equipment
by
Jung, Diane N.
,
Shara, Kailey E.
,
Bruns, Carson J.
in
3-D printers
,
Automation
,
Automation, Laboratory - economics
2025
Laboratory equipment is critical for automating tasks in modern scientific research, but often limited by high costs, large footprints, and sustainability concerns. Emerging strategies to provide low-cost research automation tools include microfluidic devices, open-hardware devices, 3D printing, and LEGO ® products. LEGO ® -based equipment may be advantageous with respect to sustainability, since their inherent modularity enables disassembly, re-purposing and re-use. To explore the feasibility and cost savings of replacing conventional lab equipment with LEGO ® -based alternatives, we developed and characterized the performance of three LEGO ® Technic TM laboratory tools: a syringe pump, an orbital shaker, and a microcentrifuge. These three machines share 384 pieces in common and can be constructed in series (687 pieces, <$83 USD) or in parallel (1215 pieces, <$174 USD). As a proof of concept, calcium carbonate microparticles were synthesized and isolated using the LEGO ® -based and analogous commercial equipment, yielding comparatively similar results. Moreover, the ability to program custom shake profiles for the LEGO ® -based orbital shaker gave access to a wider range of particle characteristics than the commercial shaker. We propose that the high cost savings and reusability of LEGO ® -based lab tools extends beyond their well-established efficacy in K-12 STEM education to an attractive resource for budget-, space- and/or sustainability-conscious laboratories.
Journal Article
Ultra-high-throughput sequencing of the immune receptor repertoire from millions of lymphocytes
by
Georgiou, George
,
McDaniel, Jonathan R
,
Tanno, Hidetaka
in
631/1647/350/877
,
631/1647/514/2254
,
631/250/2152/2497
2016
This protocol uses a microfluidic flow-focusing device to encapsulate single cells, enabling high-throughput sequencing of the paired immune receptor repertoire from millions of lymphocytes at the single-cell level.
High-throughput sequencing of the variable domains of immune receptors (antibodies and T cell receptors (TCRs)) is of key importance in the understanding of adaptive immune responses in health and disease. However, the sequencing of both immune receptor chains (VH+VL or TCRβ/δ+TCRα/γ) at the single-cell level for typical samples containing >10
4
lymphocytes is problematic, because immune receptors comprise two polypeptide chains that are encoded by separate mRNAs. Here we present a technology that allows rapid and low-cost determination of a paired immune receptor repertoire from millions of cells with high precision (>97%). Flow focusing is used to encapsulate single cells in emulsions containing magnetic beads for mRNA capture. The mRNA transcripts are then reverse-transcribed, physically linked to their partners by overlap extension PCR, and interrogated by high-throughput paired-end Illumina sequencing. This protocol describes the construction and operation of the flow-focusing device in detail, as well as the bioinformatics pipeline used to interpret the data. The entire procedure can be performed by a single researcher in under 12 h of effort per sample.
Journal Article
Simple Approaches to Minimally-Instrumented, Microfluidic-Based Point-of-Care Nucleic Acid Amplification Tests
2018
Designs and applications of microfluidics-based devices for molecular diagnostics (Nucleic Acid Amplification Tests, NAATs) in infectious disease testing are reviewed, with emphasis on minimally instrumented, point-of-care (POC) tests for resource-limited settings. Microfluidic cartridges (‘chips’) that combine solid-phase nucleic acid extraction; isothermal enzymatic nucleic acid amplification; pre-stored, paraffin-encapsulated lyophilized reagents; and real-time or endpoint optical detection are described. These chips can be used with a companion module for separating plasma from blood through a combined sedimentation-filtration effect. Three reporter types: Fluorescence, colorimetric dyes, and bioluminescence; and a new paradigm for end-point detection based on a diffusion-reaction column are compared. Multiplexing (parallel amplification and detection of multiple targets) is demonstrated. Low-cost detection and added functionality (data analysis, control, communication) can be realized using a cellphone platform with the chip. Some related and similar-purposed approaches by others are surveyed.
Journal Article
Thermopneumatic suction integrated microfluidic blood analysis system
by
Hsieh, Yu-Ling
,
Li, Bor-Ran
,
Tsou, Ping-Hsien
in
Analysis
,
Biology and Life Sciences
,
Biomedical laboratory equipment
2019
Blood tests provide crucial diagnostic information regarding several diseases. A key factor that affects the precision and accuracy of blood tests is the interference of red blood cells; however, the conventional methods of blood separation are often complicated and time consuming. In this study, we devised a simple but high-efficiency blood separation system on a self-strained microfluidic device that separates 99.7 ± 0.3% of the plasma in only 6 min. Parameters, such as flow rate, design of the filter trench, and the relative positions of the filter trench and channel, were optimized through microscopic monitoring. Moreover, this air-difference-driven device uses a cost-effective and easy-to-use heater device that creates a low-pressure environment in the microchannel within minutes. With the aforementioned advantages, this blood separation device could be another platform choice for point-of-care testing.
Journal Article
A sample-in-digital-answer-out system for rapid detection and quantitation of infectious pathogens in bodily fluids
by
Stavrakis, Stavros
,
Choo, Jaebum
,
Howes, Philip D
in
Automation
,
Body fluids
,
Commercialization
2018
A variety of automated sample-in-answer-out systems for in vitro molecular diagnostics have been presented and even commercialized. Although efficient in operation, they are incapable of quantifying targets, since quantitation based on analog analytical methods (via standard curve analysis) is complex, expensive, and challenging. To address this issue, herein, we describe an integrated sample-in-digital-answer-out (SIDAO) diagnostic system incorporating DNA extraction and digital recombinase polymerase amplification, which enables rapid and quantitative nucleic acid analysis from bodily fluids within a disposable cartridge. Inside the cartridge, reagents are pre-stored in sterilized tubes, with an automated pipetting module allowing facile liquid transfer. For digital analysis, we fabricate a simple, single-layer polydimethylsiloxane microfluidic device and develop a novel and simple sample compartmentalization strategy. Sample solution is partitioned into an array of 40,044 fL-volume microwells by sealing the microfluidic device through the application of mechanical pressure. The entire analysis is performed in a portable, fully automated instrument. We evaluate the quantitative capabilities of the system by analyzing Mycobacterium tuberculosis genomic DNA from both spiked saliva and serum samples, and demonstrate excellent analytical accuracy and specificity. This SIDAO system provides a promising diagnostic platform for quantitative nucleic acid testing at the point-of-care.
Journal Article
Ultra-low-cost fabrication of polymer-based microfluidic devices with diode laser ablation
by
Fan, Yiqiang
,
Zhang, Yajun
,
Liu, Jingji
in
Airline security
,
Carbon dioxide
,
Carbon dioxide lasers
2019
In this work, a diode laser ablation approach was used for the fabrication of PMMA-based microfluidic devices. Compared with the conventional CO2 or femtosecond laser fabrication method, the proposed laser ablation method based on diode laser significantly lowered the cost in the fabrication of polymer-based microfluidic devices with comparable resolution and surface quality. PMMA substrate was used for the laser ablation process, due to the transparency of PMMA in the diode laser’s working wavelength, a layer of Kraft tape was applied on the surface of PMMA for the absorption of laser energy, and microchannels were then achieved on the surface of PMMA with the proposed low-cost diode laser system. The comparison between the proposed method and the CO2 laser ablation method was also conducted in this study. The profile of the fabricated microchannels was carefully characterized, several microfluidic devices were also fabricated for the demonstration of the proposed fabrication method using a diode laser.
Journal Article
Simultaneous pre-concentration and separation on simple paper-based analytical device for protein analysis
2018
In this work, fast isoelectric focusing (IEF) was successfully implemented on an open paper fluidic channel for simultaneous concentration and separation of proteins from complex matrix. With this simple device, IEF can be finished in 10 min with a resolution of 0.03 pH units and concentration factor of 10, as estimated by color model proteins by smartphone-based colorimetric detection. Fast detection of albumin from human serum and glycated hemoglobin (HBA1c) from blood cell was demonstrated. In addition, off-line identification of the model proteins from the IEF fractions with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was also shown. This PAD IEF is potentially useful either for point of care test (POCT) or biomarker analysis as a cost-effective sample pretreatment method.
Journal Article
Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells
by
Graves, Steven W
,
Burger, Tobias
,
Cumbo, Michael J
in
Acoustic impedance
,
Acoustics
,
Aluminum
2018
We introduce a new method to construct microfluidic devices especially useful for bulk acoustic wave (BAW)-based manipulation of cells and microparticles. To obtain efficient acoustic focusing, BAW devices require materials that have high acoustic impedance mismatch relative to the medium in which the cells/microparticles are suspended and materials with a high-quality factor. To date, silicon and glass have been the materials of choice for BAW-based acoustofluidic channel fabrication. Silicon- and glass-based fabrication is typically performed in clean room facilities, generates hazardous waste, and can take several hours to complete the microfabrication. To address some of the drawbacks in fabricating conventional BAW devices, we explored a new approach by micromachining microfluidic channels in aluminum substrates. Additionally, we demonstrate plasma bonding of poly(dimethylsiloxane) (PDMS) onto micromachined aluminum substrates. Our goal was to achieve an approach that is both low cost and effective in BAW applications. To this end, we micromachined aluminum 6061 plates and enclosed the systems with a thin PDMS cover layer. These aluminum/PDMS hybrid microfluidic devices use inexpensive materials and are simply constructed outside a clean room environment. Moreover, these devices demonstrate effectiveness in BAW applications as demonstrated by efficient acoustic focusing of polystyrene microspheres, bovine red blood cells, and Jurkat cells and the generation of multiple focused streams in flow-through systems.
Journal Article
Simple, low-cost fabrication of acrylic based droplet microfluidics and its use to generate DNA-coated particles
by
Allen, Peter B.
,
Loewen, Amanda
,
Islam, Md. Mamunul
in
639/638/11/874
,
639/638/11/877
,
Acrylates - chemistry
2018
Hydrogel microparticles were copolymerized with surface-immobilized DNA. Particles derived from a microfluidic device and particles derived from mechanical homogenization were compared. The hypothesis was tested that a controlled droplet generation mechanism would produce more homogeneous particles. Surprisingly, the DNA content of both particle types was similarly inhomogeneous. To make this test possible, a simple, low cost, and rapid method was developed to fabricate a microfluidic chip for droplet generation and in-line polymerization. This method used a low-cost laser cutter ($400) and direct heat bonding (no adhesives or intermediate layers). The flow focusing droplet generator produced droplets and hydrogel particles 10–200 μm in diameter.
Journal Article