Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,279 result(s) for "Lactobacillus - classification"
Sort by:
Comparative genomic analysis of the multispecies probiotic-marketed product VSL#3
Several probiotic-marketed formulations available for the consumers contain live lactic acid bacteria and/or bifidobacteria. The multispecies product commercialized as VSL#3 has been used for treating various gastro-intestinal disorders. However, like many other products, the bacterial strains present in VSL#3 have only been characterized to a limited extent and their efficacy as well as their predicted mode of action remain unclear, preventing further applications or comparative studies. In this work, the genomes of all eight bacterial strains present in VSL#3 were sequenced and characterized, to advance insights into the possible mode of action of this product and also to serve as a basis for future work and trials. Phylogenetic and genomic data analysis allowed us to identify the 7 species present in the VSL#3 product as specified by the manufacturer. The 8 strains present belong to the species Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus helveticus, Bifidobacterium breve and B. animalis subsp. lactis (two distinct strains). Comparative genomics revealed that the draft genomes of the S. thermophilus and L. helveticus strains were predicted to encode most of the defence systems such as restriction modification and CRISPR-Cas systems. Genes associated with a variety of potential probiotic functions were also identified. Thus, in the three Bifidobacterium spp., gene clusters were predicted to encode tight adherence pili, known to promote bacteria-host interaction and intestinal barrier integrity, and to impact host cell development. Various repertoires of putative signalling proteins were predicted to be encoded by the genomes of the Lactobacillus spp., i.e. surface layer proteins, LPXTG-containing proteins, or sortase-dependent pili that may interact with the intestinal mucosa and dendritic cells. Taken altogether, the individual genomic characterization of the strains present in the VSL#3 product confirmed the product specifications, determined its coding capacity as well as identified potential probiotic functions.
Cervicovaginal microbiome and natural history of HPV in a longitudinal study
Human papillomavirus (HPV) infection is one of the most common sexually transmitted infections. However, only a small percentage of high-risk (HR) HPV infections progress to cervical precancer and cancer. In this study, we investigated the role of the cervicovaginal microbiome (CVM) in the natural history of HR-HPV. This study was nested within the placebo arm of the Costa Rica HPV Vaccine Trial that included women aged 18-25 years of age. Cervical samples from two visits of women with an incident HR-HPV infection (n = 273 women) were used to evaluate the prospective role of the CVM on the natural history of HR-HPV. We focus specifically on infection clearance, persistence, and progression to cervical intraepithelial neoplasia grade 2 and 3 (CIN2+). The CVM was characterized by amplification and sequencing the bacterial 16S V4 rRNA gene region and the fungal ITS1 region using an Illumina MiSeq platform. OTU clustering was performed using QIIME2. Functional groups were imputed using PICRUSt and statistical analyses were performed using R. At Visit 1 (V1) abundance of Lactobacillus iners was associated with clearance of incident HR-HPV infections (Linear Discriminant Analysis (LDA)>4.0), whereas V1 Gardnerella was the dominant biomarker for HR-HPV progression (LDA>4.0). At visit 2 (V2), increased microbial Shannon diversity was significantly associated with progression to CIN2+ (p = 0.027). Multivariate mediation analysis revealed that the positive association of V1 Gardnerella with CIN2+ progression was due to the increased cervicovaginal diversity at V2 (p = 0.040). A full multivariate model of key components of the CVM showed significant protective effects via V1 genus Lactobacillus, OR = 0.41 (0.22-0.79), V1 fungal diversity, OR = 0.90 (0.82-1.00) and V1 functional Cell Motility pathway, OR = 0.75 (0.62-0.92), whereas V2 bacterial diversity, OR = 1.19 (1.03-1.38) was shown to be predictive of progression to CIN2+. This study demonstrates that features of the cervicovaginal microbiome are associated with HR-HPV progression in a prospective longitudinal cohort. The analyses indicated that the association of Gardnerella and progression to CIN2+ may actually be mediated by subsequent elevation of microbial diversity. Identified features of the microbiome associated with HR-HPV progression may be targets for therapeutic manipulation to prevent CIN2+. ClinicalTrials.gov NCT00128661.
Pyrosequencing Analysis Reveals Changes in Intestinal Microbiota of Healthy Adults Who Received a Daily Dose of Immunomodulatory Probiotic Strains
The colon microbiota plays a crucial role in human gastrointestinal health. Current attempts to manipulate the colon microbiota composition are aimed at finding remedies for various diseases. We have recently described the immunomodulatory effects of three probiotic strains (Lactobacillus rhamnosus CNCM I-4036, Lactobacillus paracasei CNCM I-4034, and Bifidobacterium breve CNCM I-4035). The goal of the present study was to analyze the compositions of the fecal microbiota of healthy adults who received one of these strains using high-throughput 16S ribosomal RNA gene sequencing. Bacteroides was the most abundant genus in the groups that received L. rhamnosus CNCM I-4036 or L. paracasei CNCM I-4034. The Shannon indices were significantly increased in these two groups. Our results also revealed a significant increase in the Lactobacillus genus after the intervention with L. rhamnosus CNCM I-4036. The initially different colon microbiota became homogeneous in the subjects who received L. rhamnosus CNCM I-4036. While some orders that were initially present disappeared after the administration of L. rhamnosus CNCM I-4036, other orders, such as Sphingobacteriales, Nitrospirales, Desulfobacterales, Thiotrichales, and Synergistetes, were detected after the intervention. In summary, our results show that the intake of these three bacterial strains induced changes in the colon microbiota.
Effect of the continuous intake of probiotic-fermented milk containing Lactobacillus casei strain Shirota on fever in a mass outbreak of norovirus gastroenteritis and the faecal microflora in a health service facility for the aged
For conducting effective risk management in long-stay elderly people at a health service facility, we performed an open case-controlled study to evaluate the effect of the intake of probiotic-fermented milk containing Lactobacillus casei strain Shirota (LcS-fermented milk) on norovirus gastroenteritis occurring in the winter season during the intake period. A total of seventy-seven elderly people (mean age 84 years) were enrolled in the study. During a 1-month period, there was no significant difference in the incidence of norovirus gastroenteritis between the LcS-fermented milk-administered (n 39) and the non-administered (n 38) groups; however, the mean duration of fever of >37°C after the onset of gastroenteritis was 1·5 (sd 1·7) d in the former and 2·9 (sd 2·3) d in the latter group, showing a significant shortening in the former group (P < 0·05). RT-quantitative PCR analysis targeting ribosomal RNA showed both Bifidobacterium and Lactobacillus to be significantly dominant, whereas Enterobacteriaceae decreased in faecal samples from the administered group (n 10, mean age 83 years), with a significant increase in faecal acetic acid concentration. Continuous intake of LcS-fermented milk could positively contribute to the alleviation of fever caused by norovirus gastroenteritis by correcting the imbalance of the intestinal microflora peculiar to the elderly, although such consumption could not protect them from the disease.
Antimicrobial activity of Lactobacillus salivarius and Lactobacillus fermentum against Staphylococcus aureus
The increasing prevalence of methicillin-resistant Staphylococcus aureus has become a major public health threat. While lactobacilli were recently found useful in combating various pathogens, limited data exist on their therapeutic potential for S. aureus infections. The aim of this study was to determine whether Lactobacillus salivarius was able to produce bactericidal activities against S. aureus and to determine whether the inhibition was due to a generalized reduction in pH or due to secreted Lactobacillus product(s). We found an 8.6-log10 reduction of planktonic and a 6.3-log10 reduction of biofilm S. aureus. In contrast, the previously described anti-staphylococcal effects of L. fermentum only caused a 4.0-log10 reduction in planktonic S. aureus cells, with no effect on biofilm S. aureus cells. Killing of S. aureus was partially pH dependent, but independent of nutrient depletion. Cell-free supernatant that was pH neutralized and heat inactivated or proteinase K treated had significantly reduced killing of L. salivarius than with pH-neutralized supernatant alone. Proteomic analysis of the L. salivarius secretome identified a total of five secreted proteins including a LysM-containing peptidoglycan binding protein and a protein peptidase M23B. These proteins may represent potential novel anti-staphylococcal agents that could be effective against S. aureus biofilms.
A Method of Direct Quantitation of Lactobacillus spp. in Intestinal Contents Based on Real-Time PCR
The method of direct quantitation of Lactobacillus spp. and L. acidophilus in intestinal contents based on real-time PCR was developed. It does not require culturing and allows estimating the number of living lactobacilli cells (measured in lg CFU) in absolute quantitative PCR format.
Isolation, identification and characterisation of three novel probiotic strains (Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036) from the faeces of exclusively breast-fed infants
The aim of the present study was to isolate, identify and characterise novel strains of lactic acid bacteria and bifidobacteria with probiotic properties from the faeces of exclusively breast-fed infants. Of the 4680 isolated colonies, 758 exhibited resistance to low pH and tolerance to high concentrations of bile salts; of these, only forty-two exhibited a strong ability to adhere to enterocytes in vitro. The identities of the isolates were confirmed by 16S ribosomal RNA (rRNA) sequencing, which permitted the grouping of the forty-two bacteria into three different strains that showed more than 99 % sequence identity with Lactobacillus paracasei, Lactobacillus rhamnosus and Bifidobacterium breve, respectively. The strain identification was confirmed by sequencing the 16S–23S rRNA intergenic spacer regions. Strains were assayed for enzymatic activity and carbohydrate utilisation, and they were deposited in the Collection Nationale de Cultures de Microorganismes (CNCM) of the Institute Pasteur and named L. paracasei CNCM I-4034, B. breve CNCM I-4035 and L. rhamnosus CNCM I-4036. The strains were susceptible to antibiotics and did not produce undesirable metabolites, and their safety was assessed by acute ingestion in immunocompetent and immunosuppressed BALB/c mouse models. The three novel strains inhibited in vitro the meningitis aetiological agent Listeria monocytogenes and human rotavirus infections. B. breve CNCM I-4035 led to a higher IgA concentration in faeces and plasma of mice. Overall, these results suggest that L. paracasei CNCM I-4034, B. breve CNCM I-4035 and L. rhamnosus CNCM I-4036 should be considered as probiotic strains, and their human health benefits should be further evaluated.
The core genome evolution of Lactobacillus crispatus as a driving force for niche competition in the human vaginal tract
The lower female reproductive tract is notoriously dominated by Lactobacillus species, among which Lactobacillus crispatus emerges for its protective and health‐promoting activities. Although previous comparative genome analyses highlighted genetic and phenotypic diversity within the L. crispatus species, most studies have focused on the presence/absence of accessory genes. Here, we investigated the variation at the single nucleotide level within protein‐encoding genes shared across a human‐derived L. crispatus strain selection, which includes 200 currently available human‐derived L. crispatus genomes as well as 41 chromosome sequences of such taxon that have been decoded in the framework of this study. Such data clearly pointed out the presence of intra‐species micro‐diversities that could have evolutionary significance contributing to phenotypical diversification by affecting protein domains. Specifically, two single nucleotide variations in the type II pullulanase gene sequence led to specific amino acid substitutions, possibly explaining the substantial differences in the growth performances and competition abilities observed in a multi‐strain bioreactor culture simulating the vaginal environment. Accordingly, L. crispatus strains display different growth performances, suggesting that the colonisation and stable persistence in the female reproductive tract between the members of this taxon is highly variable. Within the lower female reproductive tract, Lactobacillus crispatus emerged for its protective and health‐promoting activities. The data presented here clearly pointed out the presence of intra‐species micro‐diversities that could have evolutionary significance contributing to phenotypical diversification by affecting protein domains.
Lactobacillus Species: Taxonomic Complexity and Controversial Susceptibilities
The genus Lactobacillus is a taxonomically complex and is composed of over 170 species that cannot be easily differentiated phenotypically and often require molecular identification. Although they are part of the normal human gastrointestinal and vaginal flora, they can also be occasional human pathogens. They are extensively used in a variety of commercial products including probiotics. Their antimicrobial susceptibilities are poorly defined in part because of their taxonomic complexity and are compounded by the different methods recommended by Clinical Laboratory Standards Institute and International Dairy Foundation. Their use as probiotics for prevention of Clostridium difficile infection is prevalent among consumers worldwide but raises the question of will the use of any concurrent antibiotic effect their ability to survive. Lactobacillus species are generally acid resistant and are able to survive ingestion. They are generally resistant to metronidazole, aminoglycosides and ciprofloxacin with L. acidophilus being susceptible to penicillin and vancomycin, whereas L. rhamnosus and L. casei are resistant to metronidazole and vancomycin.
Fructophilic Lactobacillus kunkeei and Lactobacillus brevis Isolated from Fresh Flowers, Bees and Bee-hives
Two-hundred-and-thirty-six isolates were collected from fresh flowers, bees and bee-hives. Of these, 20 isolates preferred D-fructose as carbon source, produced lactic acid and acetic acid but trace amounts of ethanol and were classified as fructophilic. Poor growth was recorded when strains were incubated anaerobically in the presence of D-glucose as sole carbon source. Good growth was, however, recorded when D-glucose was metabolized in the presence of external electron acceptors such as fructose, pyruvate and oxygen. Nineteen of the strains were classified as Lactobacillus kunkeei and one as Lactobacillus brevis based on phenotypic characteristics, 16S rRNA sequences, recA sequences and DNA homology. This is the first description of a fructophilic strain of L. brevis.