Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
160 result(s) for "Lassa Fever - diagnosis"
Sort by:
Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in real-time
Recent outbreaks of viral hemorrhagic fevers (VHFs), including Ebola virus disease (EVD) and Lassa fever (LF), highlight the urgent need for sensitive, deployable tests to diagnose these devastating human diseases. Here we develop CRISPR-Cas13a-based (SHERLOCK) diagnostics targeting Ebola virus (EBOV) and Lassa virus (LASV), with both fluorescent and lateral flow readouts. We demonstrate on laboratory and clinical samples the sensitivity of these assays and the capacity of the SHERLOCK platform to handle virus-specific diagnostic challenges. We perform safety testing to demonstrate the efficacy of our HUDSON protocol in heat-inactivating VHF viruses before SHERLOCK testing, eliminating the need for an extraction. We develop a user-friendly protocol and mobile application (HandLens) to report results, facilitating SHERLOCK’s use in endemic regions. Finally, we successfully deploy our tests in Sierra Leone and Nigeria in response to recent outbreaks. Outbreaks of viral hemorrhagic fevers highlight the need for sensitive, field-deployable diagnostics. Here the authors present a CRISPR-based SHERLOCK platform with field protocol and mobile app for Ebola and Lassa fever outbreaks.
Lassa fever presenting as acute abdomen: a case series
Lassa fever, an endemic zoonotic viral infection in West Africa, presents with varied symptoms including fever, vomiting, retrosternal pain, abdominal pain, sore-throat, mucosal bleeding, seizures and coma. When fever and abdominal pain are the main presenting symptoms, and a diagnosis of acute abdomen is entertained, Lassa fever is rarely considered in the differential diagnosis, even in endemic areas. Rather the diagnosis of Lassa fever is suspected only after surgical intervention. Therefore, such patients often undergo unnecessary surgery with resultant delay in the commencement of ribavirin therapy. This increases morbidity and mortality and the risk of nosocomial transmission to hospital staff.We report 7 patients aged between 17 months and 40 years who had operative intervention for suspected appendicitis, perforated typhoid ileitis, intussuception and ruptured ectopic pregnancy after routine investigations. All seven were post-operatively confirmed as Lassa fever cases. Four patients died postoperatively, most before commencement of ribavirin, while the other three patients eventually recovered with appropriate antibiotic treatment including intravenous ribavirin.Surgeons working in West Africa should include Lassa fever in the differential diagnosis of acute abdomen, especially appendicitis. The presence of high grade fever, proteinuria and thrombocytopenia in patients with acute abdomen should heighten the suspicion of Lassa fever. Prolonged intra-operative bleeding should not only raise suspicion of the disease but also serve to initiate precautions to prevent nosocomial transmission.
Lassa fever research priorities: towards effective medical countermeasures by the end of the decade
In 2016, WHO designated Lassa fever a priority disease for epidemic preparedness as part of the WHO Blueprint for Action to Prevent Epidemics. One aspect of preparedness is to promote development of effective medical countermeasures (ie, diagnostics, therapeutics, and vaccines) against Lassa fever. Diagnostic testing for Lassa fever has important limitations and key advancements are needed to ensure rapid and accurate diagnosis. Additionally, the only treatment available for Lassa fever is ribavirin, but controversy exists regarding its effectiveness. Finally, no licensed vaccines are available for the prevention and control of Lassa fever. Ongoing epidemiological and behavioural studies are also crucial in providing actionable information for medical countermeasure development, use, and effectiveness in preventing and treating Lassa fever. This Personal View provides current research priorities for development of Lassa fever medical countermeasures based on literature published primarily in the last 5 years and consensus opinion of 20 subject matter experts with broad experience in public health or the development of diagnostics, therapeutics, and vaccines for Lassa fever. These priorities provide an important framework to ensure that Lassa fever medical countermeasures are developed and readily available for use in endemic and at-risk areas by the end of the decade.
Epidemiological trends of Lassa fever in Nigeria, 2018–2021
Lassa fever is a viral haemorrhagic fever endemic in Nigeria. Improved surveillance and testing capacity have revealed in an increased number of reported cases and apparent geographic spread of Lassa fever in Nigeria. We described the recent four-year trend of Lassa fever in Nigeria to improve understanding of its epidemiology and inform the design of appropriate interventions. We analysed the national surveillance data on Lassa fever maintained by the Nigeria Centre for Diseases Control (NCDC) and described trends, sociodemographic, geographic distribution, and clinical outcomes. We compared cases, positivity, and clinical outcomes in the period January 2018 to December 2021. We found Lassa fever to be reported throughout the year with more than half the cases reported within the first quarter of the year, a recent increase in numbers and geographic spread of the virus, and male and adult (>18 years) preponderance. Case fatality rates were worse in males, the under-five and elderly, during off-peak periods, and among low reporting states. Lassa fever is endemic in Nigeria with a recent increase in numbers and geographical distribution. Sustaining improved surveillance, enhanced laboratory diagnosis and improved case management capacity during off-peak periods should remain a priority. Attention should be paid to the very young and elderly during outbreaks. Further research efforts should identify and address specific factors that determine poor clinical outcomes.
Lassa Fever in Post-Conflict Sierra Leone
Lassa fever (LF), an often-fatal hemorrhagic disease caused by Lassa virus (LASV), is a major public health threat in West Africa. When the violent civil conflict in Sierra Leone (1991 to 2002) ended, an international consortium assisted in restoration of the LF program at Kenema Government Hospital (KGH) in an area with the world's highest incidence of the disease. Clinical and laboratory records of patients presenting to the KGH Lassa Ward in the post-conflict period were organized electronically. Recombinant antigen-based LF immunoassays were used to assess LASV antigenemia and LASV-specific antibodies in patients who met criteria for suspected LF. KGH has been reestablished as a center for LF treatment and research, with over 500 suspected cases now presenting yearly. Higher case fatality rates (CFRs) in LF patients were observed compared to studies conducted prior to the civil conflict. Different criteria for defining LF stages and differences in sensitivity of assays likely account for these differences. The highest incidence of LF in Sierra Leone was observed during the dry season. LF cases were observed in ten of Sierra Leone's thirteen districts, with numerous cases from outside the traditional endemic zone. Deaths in patients presenting with LASV antigenemia were skewed towards individuals less than 29 years of age. Women self-reporting as pregnant were significantly overrepresented among LASV antigenemic patients. The CFR of ribavirin-treated patients presenting early in acute infection was lower than in untreated subjects. Lassa fever remains a major public health threat in Sierra Leone. Outreach activities should expand because LF may be more widespread in Sierra Leone than previously recognized. Enhanced case finding to ensure rapid diagnosis and treatment is imperative to reduce mortality. Even with ribavirin treatment, there was a high rate of fatalities underscoring the need to develop more effective and/or supplemental treatments for LF.
Metagenomic surveillance uncovers diverse and novel viral taxa in febrile patients from Nigeria
Effective infectious disease surveillance in high-risk regions is critical for clinical care and pandemic preemption; however, few clinical diagnostics are available for the wide range of potential human pathogens. Here, we conduct unbiased metagenomic sequencing of 593 samples from febrile Nigerian patients collected in three settings: i) population-level surveillance of individuals presenting with symptoms consistent with Lassa Fever (LF); ii) real-time investigations of outbreaks with suspected infectious etiologies; and iii) undiagnosed clinically challenging cases. We identify 13 distinct viruses, including the second and third documented cases of human blood-associated dicistrovirus, and a highly divergent, unclassified dicistrovirus that we name human blood-associated dicistrovirus 2. We show that pegivirus C is a common co-infection in individuals with LF and is associated with lower Lassa viral loads and favorable outcomes. We help uncover the causes of three outbreaks as yellow fever virus, monkeypox virus, and a noninfectious cause, the latter ultimately determined to be pesticide poisoning. We demonstrate that a local, Nigerian-driven metagenomics response to complex public health scenarios generates accurate, real-time differential diagnoses, yielding insights that inform policy. Applying metagenomics, the authors identify 13 viruses in febrile Nigerians, including a new dicistrovirus. Real-time phylogenetics spurred national vaccination campaigns, while retrospective analysis linked pegivirus C co-infections to favorable Lassa Fever outcomes.
Pathogens that Cause Illness Clinically Indistinguishable from Lassa Fever, Nigeria, 2018
During the 2018 Lassa fever outbreak in Nigeria, samples from patients with suspected Lassa fever but negative Lassa virus PCR results were processed through custom gene expression array cards and metagenomic sequencing. Results demonstrated no single etiology, but bacterial and viral pathogens (including mixed co-infections) were detected.
An Outbreak of Ebola Virus Disease in the Lassa Fever Zone
Background. Kenema Government Hospital (KGH) has developed an advanced clinical and laboratory research capacity to manage the threat of Lassa fever, a viral hemorrhagic fever (VHF). The 2013-2016 Ebola virus (EBOV) disease (EVD) outbreak is the first to have occurred in an area close to a facility with established clinical and laboratory capacity for study of VHFs. Methods. Because of its proximity to the epicenter of the EVD outbreak, which began in Guinea in March 2014, the KGH Lassa fever Team mobilized to establish EBOV surveillance and diagnostic capabilities. Results. Augustine Goba, director of the KGH Lassa laboratory, diagnosed the first documented case of EVD in Sierra Leone, on 25 May 2014. Thereafter, KGH received and cared for numbers of patients with EVD that quickly overwhelmed the capacity for safe management. Numerous healthcare workers contracted and lost their lives to EVD. The vast majority of subsequent EVD cases in West Africa can be traced back to a single transmission chain that includes this first diagnosed case. Conclusions. Responding to the challenges of confronting 2 hemorrhagic fever viruses will require continued investments in the development of countermeasures (vaccines, therapeutic agents, and diagnostic assays), infrastructure, and human resources.
A prospective, multi-site, cohort study to estimate incidence of infection and disease due to Lassa fever virus in West African countries (the Enable Lassa research programme)–Study protocol
Lassa fever (LF), a haemorrhagic illness caused by the Lassa fever virus (LASV), is endemic in West Africa and causes 5000 fatalities every year. The true prevalence and incidence rates of LF are unknown as infections are often asymptomatic, clinical presentations are varied, and surveillance systems are not robust. The aim of the Enable Lassa research programme is to estimate the incidences of LASV infection and LF disease in five West African countries. The core protocol described here harmonises key study components, such as eligibility criteria, case definitions, outcome measures, and laboratory tests, which will maximise the comparability of data for between-country analyses. We are conducting a prospective cohort study in Benin, Guinea, Liberia, Nigeria (three sites), and Sierra Leone from 2020 to 2023, with 24 months of follow-up. Each site will assess the incidence of LASV infection, LF disease, or both. When both incidences are assessed the LASV cohort (nmin = 1000 per site) will be drawn from the LF cohort (nmin = 5000 per site). During recruitment participants will complete questionnaires on household composition, socioeconomic status, demographic characteristics, and LF history, and blood samples will be collected to determine IgG LASV serostatus. LF disease cohort participants will be contacted biweekly to identify acute febrile cases, from whom blood samples will be drawn to test for active LASV infection using RT-PCR. Symptom and treatment data will be abstracted from medical records of LF cases. LF survivors will be followed up after four months to assess sequelae, specifically sensorineural hearing loss. LASV infection cohort participants will be asked for a blood sample every six months to assess LASV serostatus (IgG and IgM). Data on LASV infection and LF disease incidence in West Africa from this research programme will determine the feasibility of future Phase IIb or III clinical trials for LF vaccine candidates.
Rapid diagnostic tests for Lassa fever: what do we aim for?
Lassa virus (LASV) is a high-consequence pathogen endemic to west Africa that causes annual outbreaks with substantial mortality. Besides transmission from the rodent reservoir to humans, human-to-human transmission can occur through contact with blood and other bodily fluids.1,2 To date, people in endemic regions presenting with the initially unspecific clinical symptoms of Lassa fever are mostly tested for LASV only after empirical treatment with antimalarials and antibiotics has failed. The sensitivity of the test was poorly correlated with viral load, as false-negative test results also occurred in highly viraemic individuals.3 Based on the understanding that RDTs are often imperfect diagnostic tools, they could still have a highly positive impact on patient management when used wisely. [...]to correctly interpret the results of this study, we need to first ask what the minimum acceptable test performance characteristics of an RDT are for this high-consequence pathogen. [...]tests have proven sufficiently accurate in the field, we must continue to rely on an accelerated implementation of molecular diagnostic assays for Lassa fever diagnosis.