Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
9,014 result(s) for "Lipopolysaccharides - analysis"
Sort by:
Multi-receptor detection of individual bacterial products by the innate immune system
Key Points The innate immune system can detect bacteria by sensing their cell-wall-associated molecules, including lipopolysaccharide, lipoproteins, peptidoglycan and flagellin. Each of these types of molecules is defined as a pathogen-associated molecular pattern (PAMP) and has the capacity to induce inflammatory responses to ensure host defence. Three common themes govern innate immune responses to bacteria. These themes include the use of multiple host receptors to detect individual PAMPs, the use of cytosolic supramolecular organizing centres (SMOCs) to promote inflammation and the use of complementary SMOC-dependent activities to ensure host defence. The best-defined SMOCs are the myddosome, which is assembled on bacterial detection by Toll-like receptors, and the inflammasome, which is assembled on bacterial detection by various cytosolic receptors. Pathogenic and commensal bacteria have evolved mechanisms to avoid recognition by pattern-recognition receptors, particularly by altering the structure of their PAMPs. Multiple evasion strategies are shared by commensals and pathogens alike. The detection of cell wall components has a critical role in the recognition of bacteria and the initiation of host defence. In this Review, Kieser and Kagan discuss common themes associated with the detection of individual bacterial products by diverse receptors of the innate immune system. The receptors of the innate immune system detect specific microbial ligands to promote effective inflammatory and adaptive immune responses. Although this idea is well appreciated, studies in recent years have highlighted the complexity of innate immune detection, with multiple host receptors recognizing the same microbial ligand. Understanding the collective actions of diverse receptors that recognize common microbial signatures represents a new frontier in the study of innate immunity, and is the focus of this Review. Here, we discuss examples of individual bacterial cell wall components that are recognized by at least two and as many as four different receptors of the innate immune system. These receptors survey the extracellular or cytosolic spaces for their cognate ligands and operate in a complementary manner to induce distinct cellular responses. We further highlight that, despite this genetic diversity in receptors and pathways, common features exist to explain the operation of these receptors. These common features may help to provide unifying organizing principles associated with host defence.
The Role of Carbohydrates in the Lipopolysaccharide (LPS)/Toll-Like Receptor 4 (TLR4) Signalling
The interactions between sugar-containing molecules from the bacteria cell wall and pattern recognition receptors (PRR) on the plasma membrane or cytosol of specialized host cells are the first molecular events required for the activation of higher animal’s immune response and inflammation. This review focuses on the role of carbohydrates of bacterial endotoxin (lipopolysaccharide, LPS, lipooligosaccharide, LOS, and lipid A), in the interaction with the host Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD-2) complex. The lipid chains and the phosphorylated disaccharide core of lipid A moiety are responsible for the TLR4 agonist action of LPS, and the specific interaction between MD-2, TLR4, and lipid A are key to the formation of the activated complex (TLR4/MD-2/LPS)2, which starts intracellular signalling leading to nuclear factors activation and to production of inflammatory cytokines. Subtle chemical variations in the lipid and sugar parts of lipid A cause dramatic changes in endotoxin activity and are also responsible for the switch from TLR4 agonism to antagonism. While the lipid A pharmacophore has been studied in detail and its structure-activity relationship is known, the contribution of core saccharides 3-deoxy-d-manno-octulosonic acid (Kdo) and heptosyl-2-keto-3-deoxy-octulosonate (Hep) to TLR4/MD-2 binding and activation by LPS and LOS has been investigated less extensively. This review focuses on the role of lipid A, but also of Kdo and Hep sugars in LPS/TLR4 signalling.
Aptasensor based on gold nanostructure-decorated 2D Cu metal–organic framework nanosheets for highly sensitive and specific electrochemical lipopolysaccharide detection
Detecting lipopolysaccharide (LPS) using electrochemical methods is significant because of their exceptional sensitivity, simplicity, and user-friendliness. Two-dimensional metal–organic framework (2D-MOF) that merges the benefits of MOF and 2D nanostructure has exhibited remarkable performance in constructing electrochemical sensors, notably surpassing traditional 3D-MOFs. In this study, Cu[tetrakis(4-carboxylphenyl)porphyrin] (Cu-TCPP) and Cu(tetrahydroxyquinone) (Cu-THQ) 2D nanosheets were synthesized and applied on a glassy carbon electrode (GCE). The 2D-MOF nanosheets, which serve as supporting layers, exhibit improved electron transfer and electronic conductivity characteristics. Subsequently, the modified electrode was subjected to electrodeposition with Au nanostructures, resulting in the formation of Au/Cu-TCPP/GCE and Au/Cu-THQ/GCE. Notably, the Au/Cu-THQ/GCE demonstrated superior electrochemical activity because of the 2D morphology, redox ligand, dense Cu sites, and improved deposition of flower-like Au nanostructure based on Cu-THQ. The electron transfer specific surface area was increased by the improved deposition of Au nanostructures, which facilitates enriched binding of LPS aptamer and significantly improved the detection performance of Apt/Au/Cu-THQ/GCE electrochemical aptasensor. The limit of detection for LPS reached 0.15 fg/mL with a linear range of 1 fg/mL − 100 pg/mL. The proposed aptasensor demonstrated the ability to detect LPS in serum samples with satisfactory accuracy, indicating significant potential for clinical diagnosis. Graphical Abstract
Colorimetric detection and typing of E. coli lipopolysaccharides based on a dual aptamer-functionalized gold nanoparticle probe
A rapid method for identification and typing of lipopolysaccharides (LPS) was developed by utilizing the different binding affinities between two kinds of gold nanoparticles (AuNPs) functionalized with two aptamers. Aptamers against ethanolamine and E. coli O111:B4 LPS were used to functionalize the AuNPs. The AuNPs functionalized with ethanolamine aptamer can bind to ethanolamine and are termed general probe (G-probe). The G-probe can recognize any type of LPS because ethanolamine is a component of every type of LPS. This causes a sandwich-mediated aggregation of the AuNPs and a color change from red to blue. The AuNPs functionalized with aptamer against the LPS of E. coli O111:B4 specifically bind to O111:B4 LPS and are termed specific probe (S-probe). By using these two probes, a logic typing method was developed. It can detect LPS in concentrations between 2.5 and 20 μg·mL −1 and with a 1 μg·mL −1 detection limit. In the authors’ perception, the use of a dual aptamer-based colorimetric method has a large potential in terms of selective detection of microorganisms. Graphical abstract Two aptamer functionalized AuNP probes, G-probe and S-probe, were prepared for LPS typing and detecting. E. coli O111:B4 LPS was easily distinguished from O55:B5 LPS according to the signal output configurations (On & On Vs On & Off) of a general probe (G-probe) and a specific probe (S-probe).
Nanomaterials for Biosensing Lipopolysaccharide
Lipopolysaccharides (LPS) are endotoxins, hazardous and toxic inflammatory stimulators released from the outer membrane of Gram-negative bacteria, and are the major cause of septic shock giving rise to millions of fatal illnesses worldwide. There is an urgent need to identify and detect these molecules selectively and rapidly. Pathogen detection has been done by traditional as well as biosensor-based methods. Nanomaterial based biosensors can assist in achieving these goals and have tremendous potential. The biosensing techniques developed are low-cost, easy to operate, and give a fast response. Due to extremely small size, large surface area, and scope for surface modification, nanomaterials have been used to target various biomolecules, including LPS. The sensing mechanism can be quite complex and involves the transformation of chemical interactions into amplified physical signals. Many different sorts of nanomaterials such as metal nanomaterials, magnetic nanomaterials, quantum dots, and others have been used for biosensing of LPS and have shown attractive results. This review considers the recent developments in the application of nanomaterials in sensing of LPS with emphasis given mainly to electrochemical and optical sensing.
Diagnostic accuracy, incremental yield and prognostic value of Determine TB-LAM for routine diagnostic testing for tuberculosis in HIV-infected patients requiring acute hospital admission in South Africa: a prospective cohort
Background We previously reported that one-third of HIV-positive adults requiring medical admission to a South African district hospital had laboratory-confirmed tuberculosis (TB) and that almost two-thirds of cases could be rapidly diagnosed using Xpert MTB/RIF-testing of concentrated urine samples obtained on the first day of admission. Implementation of urine-based, routine, point-of-care TB screening is an attractive intervention that might be facilitated by use of a simple, low-cost diagnostic tool, such as the Determine TB-LAM lateral-flow rapid test for HIV-associated TB. Methods Sputum, urine and blood samples were systematically obtained from unselected HIV-positive adults within 24 hours of admission to a South African township hospital. Additional clinical samples were obtained during hospitalization as clinically indicated. TB was defined by the detection of Mycobacterium tuberculosis in any sample using Xpert MTB/RIF or liquid culture. The diagnostic yield, accuracy and prognostic value of urine-lipoarabinomannan (LAM) testing were determined, but urine-LAM results did not inform treatment decisions. Results Consecutive HIV-positive adult acute medical admissions not already receiving TB treatment ( n  = 427) were enrolled regardless of clinical presentation or symptoms. TB was diagnosed in 139 patients (TB prevalence 32.6%; median CD4 count 80 cells/μL). In the first 24 hours of admission, sputum (spot and/or induced) samples were obtained from 37.0% of patients and urine samples from 99.5% of patients ( P  < 0.001). The diagnostic yields from these specimens were 19.4% ( n  = 27/139) for sputum-microscopy, 26.6% ( n  = 37/139) for sputum-Xpert, 38.1% ( n  = 53/139) for urine-LAM and 52.5% ( n  = 73/139) for sputum-Xpert/urine-LAM combined ( P  < 0.01). Corresponding yields among patients with CD4 counts <100 cells/μL were 18.9%, 24.3%, 55.4% and 63.5%, respectively ( P  < 0.01). The diagnostic yield of urine-LAM was unrelated to respiratory symptoms, and LAM assay specificity (using a grade-2 cut-off) was 98.9% (274/277; 95% confidence interval [CI] 96.9–99.8). Among TB cases, positive urine-LAM status was strongly associated with mortality at 90 days (adjusted hazard ratio 4.20; 95% CI 1.50–11.75). Conclusions Routine testing for TB in newly admitted HIV-positive adults using Determine TB-LAM to test urine provides major incremental diagnostic yield with very high specificity when used in combination with sputum testing and has important utility among those without respiratory TB symptoms and/or unable to produce sputum. The assay also rapidly identifies individuals with a poor prognosis.
Significant Association Between Increased Abundance of Selected Bacterial Lipopolysaccharides and Norovirus Diarrhea Among South African Infants
Bacterial lipopolysaccharides (LPS) have been shown to promote enteric viral infections. This study assessed whether possessing elevated levels of LPS was associated with norovirus infection. Fecal samples from diarrheic norovirus-positive (DNP) (n = 26), non-diarrheal norovirus-negative (NDNN) (n = 26), asymptomatic norovirus-positive (ANP) (n = 15), and diarrheic norovirus-negative (DNN) (n =15) infants were assayed for selected bacterial LPS by quantitative PCR. The mean levels of selected LPS gene targets were significantly high in DNP infants (6.17 ± 2.14 CFU/g) versus NDNN infants (4.13 ± 2.25 CFU/g), p = 0.003. So too was the abundance between DNP and DNN infants (p = 0.0023). The levels of selected LPS gene targets were high regardless of whether the infection was symptomatic or asymptomatic, p = 0.3808. The average expression of genes coding for selected LPS and their signalling molecule, Toll-like receptor 4 (TLR4), increased 7- and 2.5-fold, respectively, in DNP versus NDNN children. Infants possessing elevated levels of selected LPS-rich bacteria were 1.51 times more likely to develop norovirus diarrhea (95% CI: 1.14–2.01, p = 0.004). In conclusion, norovirus infection was associated with abundance of selected bacterial LPS, suggesting a possible role of bacterial LPS in norovirus infection.
Coagulation factors VII, IX and X are effective antibacterial proteins against drug-resistant Gram-negative bacteria
Infections caused by drug-resistant “superbugs” pose an urgent public health threat due to the lack of effective drugs; however, certain mammalian proteins with intrinsic antibacterial activity might be underappreciated. Here, we reveal an antibacterial property against Gram-negative bacteria for factors VII, IX and X, three proteins with well-established roles in initiation of the coagulation cascade. These factors exert antibacterial function via their light chains (LCs). Unlike many antibacterial agents that target cell metabolism or the cytoplasmic membrane, the LCs act by hydrolyzing the major components of bacterial outer membrane, lipopolysaccharides, which are crucial for the survival of Gram-negative bacteria. The LC of factor VII exhibits in vitro efficacy towards all Gram-negative bacteria tested, including extensively drug-resistant (XDR) pathogens, at nanomolar concentrations. It is also highly effective in combating XDR Pseudomonas aeruginosa and Acinetobacter baumannii infections in vivo. Through decoding a unique mechanism whereby factors VII, IX and X behave as antimicrobial proteins, this study advances our understanding of the coagulation system in host defense, and suggests that these factors may participate in the pathogenesis of coagulation disorder-related diseases such as sepsis via their dual functions in blood coagulation and resistance to infection. Furthermore, this study may offer new strategies for combating Gram-negative “superbugs”.
Differential Responses of Pattern Recognition Receptors to Outer Membrane Vesicles of Three Periodontal Pathogens
Highly purified outer membrane vesicles (OMVs) of the periodontal pathogens, Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia were produced using tangential flow ultrafiltration, ultracentrifugation and Optiprep density gradient separation. Cryo-TEM and light scattering showed OMVs to be single lipid-bilayers with modal diameters of 75 to 158 nm. Enumeration of OMVs by nanoparticle flow-cytometry at the same stage of late exponential culture indicated that P. gingivalis was the most prolific OMV producer. P. gingivalis OMVs induced strong TLR2 and TLR4-specific responses and moderate responses in TLR7, TLR8, TLR9, NOD1 and NOD2 expressing-HEK-Blue cells. Responses to T. forsythia OMVs were less than those of P. gingivalis and T. denticola OMVs induced only weak responses. Compositional analyses of OMVs from the three pathogens demonstrated differences in protein, fatty acids, lipopolysaccharide, peptidoglycan fragments and nucleic acids. Periodontal pathogen OMVs induced differential pattern recognition receptor responses that have implications for their role in chronic periodontitis.