Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
102 result(s) for "Lopinavir/ritonavir"
Sort by:
Lopinavir-ritonavir and hydroxychloroquine for critically ill patients with COVID-19: REMAP-CAP randomized controlled trial
PurposeTo study the efficacy of lopinavir-ritonavir and hydroxychloroquine in critically ill patients with coronavirus disease 2019 (COVID-19).MethodsCritically ill adults with COVID-19 were randomized to receive lopinavir-ritonavir, hydroxychloroquine, combination therapy of lopinavir-ritonavir and hydroxychloroquine or no antiviral therapy (control). The primary endpoint was an ordinal scale of organ support-free days. Analyses used a Bayesian cumulative logistic model and expressed treatment effects as an adjusted odds ratio (OR) where an OR > 1 is favorable.ResultsWe randomized 694 patients to receive lopinavir-ritonavir (n = 255), hydroxychloroquine (n = 50), combination therapy (n = 27) or control (n = 362). The median organ support-free days among patients in lopinavir-ritonavir, hydroxychloroquine, and combination therapy groups was 4 (– 1 to 15), 0 (– 1 to 9) and—1 (– 1 to 7), respectively, compared to 6 (– 1 to 16) in the control group with in-hospital mortality of 88/249 (35%), 17/49 (35%), 13/26 (50%), respectively, compared to 106/353 (30%) in the control group. The three interventions decreased organ support-free days compared to control (OR [95% credible interval]: 0.73 [0.55, 0.99], 0.57 [0.35, 0.83] 0.41 [0.24, 0.72]), yielding posterior probabilities that reached the threshold futility (≥ 99.0%), and high probabilities of harm (98.0%, 99.9% and > 99.9%, respectively). The three interventions reduced hospital survival compared with control (OR [95% CrI]: 0.65 [0.45, 0.95], 0.56 [0.30, 0.89], and 0.36 [0.17, 0.73]), yielding high probabilities of harm (98.5% and 99.4% and 99.8%, respectively).ConclusionAmong critically ill patients with COVID-19, lopinavir-ritonavir, hydroxychloroquine, or combination therapy worsened outcomes compared to no antiviral therapy.
Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial
Background It had been more than 5 years since the first case of Middle East Respiratory Syndrome coronavirus infection (MERS-CoV) was recorded, but no specific treatment has been investigated in randomized clinical trials. Results from in vitro and animal studies suggest that a combination of lopinavir/ritonavir and interferon-β1b (IFN-β1b) may be effective against MERS-CoV. The aim of this study is to investigate the efficacy of treatment with a combination of lopinavir/ritonavir and recombinant IFN-β1b provided with standard supportive care, compared to treatment with placebo provided with standard supportive care in patients with laboratory-confirmed MERS requiring hospital admission. Methods The protocol is prepared in accordance with the SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials) guidelines. Hospitalized adult patients with laboratory-confirmed MERS will be enrolled in this recursive, two-stage, group sequential, multicenter, placebo-controlled, double-blind randomized controlled trial. The trial is initially designed to include 2 two-stage components. The first two-stage component is designed to adjust sample size and determine futility stopping, but not efficacy stopping. The second two-stage component is designed to determine efficacy stopping and possibly readjustment of sample size. The primary outcome is 90-day mortality. Discussion This will be the first randomized controlled trial of a potential treatment for MERS. The study is sponsored by King Abdullah International Medical Research Center, Riyadh, Saudi Arabia. Enrollment for this study began in November 2016, and has enrolled thirteen patients as of Jan 24-2018. Trial registration ClinicalTrials.gov, ID: NCT02845843 . Registered on 27 July 2016.
Timing of Antiviral Treatment Initiation is Critical to Reduce SARS‐CoV‐2 Viral Load
We modeled the viral dynamics of 13 untreated patients infected with severe acute respiratory syndrome‐coronavirus 2 to infer viral growth parameters and predict the effects of antiviral treatments. In order to reduce peak viral load by more than two logs, drug efficacy needs to be > 90% if treatment is administered after symptom onset; an efficacy of 60% could be sufficient if treatment is initiated before symptom onset. Given their pharmacokinetic/pharmacodynamic properties, current investigated drugs may be in a range of 6–87% efficacy. They may help control virus if administered very early, but may not have a major effect in severely ill patients.
Lopinavir/ritonavir combination therapy amongst symptomatic coronavirus disease 2019 patients in India: Protocol for restricted public health emergency use
As of February 29, 2020, more than 85,000 cases of coronavirus disease 2019 (COVID-19) have been reported from China and 53 other countries with 2,924 deaths. On January 30, 2020, the first laboratory-confirmed case of COVID was reported from Kerala, India. In view of the earlier evidence about effectiveness of repurposed lopinavir/ritonavir against severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronavirus (CoV), as well as preliminary docking studies conducted by the ICMR-National Institute of Virology, Pune, the Central Drugs Standard Control Organization approved the restricted public health use of lopinavir/ritonavir combination amongst symptomatic COVID-19 patients detected in the country. Hospitalized adult patients with laboratory-confirmed SARS-CoV-2 infection with any one of the following criteria will be eligible to receive lopinavir/ritonavir for 14 days after obtaining written informed consent: (i) respiratory distress with respiratory rate ≥22/min or SpO2of <94 per cent; (ii) lung parenchymal infiltrates on chest X-ray; (iii) hypotension defined as systolic blood pressure <90 mmHg or need for vasopressor/inotropic medication; (iv) new-onset organ dysfunction; and (v) high-risk groups - age >60 yr, diabetes mellitus, renal failure, chronic lung disease and immunocompromised persons. Patients will be monitored to document clinical (hospital length of stay and mortality at 14, 28 and 90 days), laboratory (presence of viral RNA in serial throat swab samples) and safety (adverse events and serious adverse events) outcomes. Treatment outcomes amongst initial cases would be useful in providing guidance about the clinical management of patients with COVID-19. If found useful in managing initial SARS-CoV-2-infected patients, further evaluation using a randomized control trial design is warranted to guide future therapeutic use of this combination.
Treatment of Middle East respiratory syndrome with a combination of lopinavir/ritonavir and interferon-β1b (MIRACLE trial): statistical analysis plan for a recursive two-stage group sequential randomized controlled trial
The MIRACLE trial (MERS-CoV Infection tReated with A Combination of Lopinavir/ritonavir and intErferon-β1b) investigates the efficacy of a combination therapy of lopinavir/ritonavir and recombinant interferon-β1b provided with standard supportive care, compared to placebo provided with standard supportive care, in hospitalized patients with laboratory-confirmed MERS. The MIRACLE trial is designed as a recursive, two-stage, group sequential, multicenter, placebo-controlled, double-blind randomized controlled trial. The aim of this article is to describe the statistical analysis plan for the MIRACLE trial. The primary outcome is 90-day mortality. The primary analysis will follow the intention-to-treat principle. The MIRACLE trial is the first randomized controlled trial for MERS treatment. Trial registration ClinicalTrials.gov, NCT02845843 . Registered on 27 July 2016.
Use of repurposed and adjuvant drugs in hospital patients with covid-19: multinational network cohort study
AbstractObjectiveTo investigate the use of repurposed and adjuvant drugs in patients admitted to hospital with covid-19 across three continents.DesignMultinational network cohort study.SettingHospital electronic health records from the United States, Spain, and China, and nationwide claims data from South Korea.Participants303 264 patients admitted to hospital with covid-19 from January 2020 to December 2020.Main outcome measuresPrescriptions or dispensations of any drug on or 30 days after the date of hospital admission for covid-19.ResultsOf the 303 264 patients included, 290 131 were from the US, 7599 from South Korea, 5230 from Spain, and 304 from China. 3455 drugs were identified. Common repurposed drugs were hydroxychloroquine (used in from <5 (<2%) patients in China to 2165 (85.1%) in Spain), azithromycin (from 15 (4.9%) in China to 1473 (57.9%) in Spain), combined lopinavir and ritonavir (from 156 (<2%) in the VA-OMOP US to 2,652 (34.9%) in South Korea and 1285 (50.5%) in Spain), and umifenovir (0% in the US, South Korea, and Spain and 238 (78.3%) in China). Use of adjunctive drugs varied greatly, with the five most used treatments being enoxaparin, fluoroquinolones, ceftriaxone, vitamin D, and corticosteroids. Hydroxychloroquine use increased rapidly from March to April 2020 but declined steeply in May to June and remained low for the rest of the year. The use of dexamethasone and corticosteroids increased steadily during 2020.ConclusionsMultiple drugs were used in the first few months of the covid-19 pandemic, with substantial geographical and temporal variation. Hydroxychloroquine, azithromycin, lopinavir-ritonavir, and umifenovir (in China only) were the most prescribed repurposed drugs. Antithrombotics, antibiotics, H2 receptor antagonists, and corticosteroids were often used as adjunctive treatments. Research is needed on the comparative risk and benefit of these treatments in the management of covid-19.
Cartilage-protective effects of lopinavir/ritonavir: in vitro and in silico exploration of the HIF-1α/SOX9/IL-1β pathway
Background This study aimed to investigate the effects of Lopinavir/Ritonavir (Lop/r) on chondrocyte structure and extracellular matrix (ECM) integrity, as well as its impact on key proteins involved in anabolic and catabolic pathways, using both in vitro and in silico approaches. Methods Drug-target interaction networks were constructed through bioinformatics analyses, and molecular docking was performed. Human primary chondrocytes were treated with Lop/r, and untreated cells served as controls. Cell viability, proliferation, and protein expression levels were assessed using standard in vitro techniques, including spectrophotometric assays and Western blotting. Results Molecular docking analyses revealed strong binding affinities between Lop/r and osteoarthritis-related targets such as HIF-1α, EP300, TNF, IL-6, KCNA5, and IL-1β, suggesting modulation of hypoxia, inflammatory, and epigenetic pathways. In vitro, Lop/r did not alter chondrocyte morphology or ECM structure and was not cytotoxic ( p  < 0.05). However, it significantly reduced the expression of critical proteins including HIF-1α, SOX9, and IL-1β ( p  < 0.05). Conclusion These findings suggest that Lop/r may exert regulatory effects on cartilage-related molecular pathways and holds promise as a repurposed therapeutic agent for osteoarthritis. Further studies are warranted to confirm its potential in clinical applications.
COVID-19: A Brief Overview of the Discovery Clinical Trial
The outbreak of COVID-19 is leading to a tremendous search for curative treatments. The urgency of the situation favors a repurposing of active drugs but not only antivirals. This short communication focuses on four treatments recommended by WHO and included in the first clinical trial of the European Discovery project.
Comparison of hydroxychloroquine, lopinavir/ritonavir, and standard of care in critically ill patients with SARS-CoV-2 pneumonia: an opportunistic retrospective analysis
Background The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak is spreading worldwide. To date, no specific treatment has convincingly demonstrated its efficacy. Hydroxychloroquine and lopinavir/ritonavir have potential interest, but virological and clinical data are scarce, especially in critically ill patients. Methods The present report took the opportunity of compassionate use and successive drug shortages to compare the effects of two therapeutic options, lopinavir/ritonavir and hydroxychloroquine, as compared to standard of care only. The primary outcomes were treatment escalation (intubation, extra-corporeal membrane oxygenation support, or renal replacement therapy) after day 1 until day 28. Secondary outcomes included ventilator-free days at day 28, mortality at day 14 and day 28, treatment safety issues and changes in respiratory tracts, and plasma viral load (as estimated by cycle threshold value) between admission and day 7. Results Eighty patients were treated during a 4-week period and included in the analysis: 22 (28%) received standard of care only, 20 (25%) patients received lopinavir/ritonavir associated to standard of care, and 38 (47%) patients received hydroxychloroquine and standard of care. Baseline characteristics were well balanced between the 3 groups. Treatment escalation occurred in 9 (41%), 10 (50%), and 15 (39%) patients who received standard of care only, standard of care and lopinavir/ritonavir, and standard of care and hydroxychloroquine, respectively ( p  = 0.567). There was no significant difference between groups regarding the number of ventilator-free days at day 28 and mortality at day 14 and day 28. Finally, there was no significant change between groups in viral respiratory or plasma load between admission and day 7. Conclusion In critically ill patients admitted for SARS-CoV-2-related pneumonia, no difference was found between hydroxychloroquine or lopinavir/ritonavir as compared to standard of care only on the proportion of patients who needed treatment escalation at day 28. Further randomized controlled trials are required to demonstrate whether these drugs may be useful in this context.
Drug Repurposing in the COVID-19 Era: Insights from Case Studies Showing Pharmaceutical Peculiarities
COVID-19 may lead to severe respiratory distress syndrome and high risk of death in some patients. So far (January 2021), only the antiviral remdesivir has been approved, although no significant benefits in terms of mortality and clinical improvement were recently reported. In a setting where effective and safe treatments for COVID-19 are urgently needed, drug repurposing may take advantage of the fact that the safety profile of an agent is already well known and allows rapid investigation of the efficacy of potential treatments, at lower costs and with reduced risk of failure. Furthermore, novel pharmaceutical formulations of older agents (e.g., aerosolized administration of chloroquine/hydroxychloroquine, remdesivir, heparin, pirfenidone) have been tested in order to increase pulmonary delivery and/or antiviral effects of potentially active drugs, thus overcoming pharmacokinetic issues. In our review, we will highlight the importance of the drug repurposing strategy in the context of COVID-19, including regulatory and ethical aspects, with a specific focus on novel pharmaceutical formulations and routes of administration.