Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
7,355 result(s) for "Lung - virology"
Sort by:
Antibodies against endogenous retroviruses promote lung cancer immunotherapy
B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS) 1 , 2 . Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive 1 , 2 . Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma 3 . We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response. In lung adenocarcinoma, antibodies against endogenous retroviruses promote anti-tumour activity, and expression of endogenous retroviruses can predict outcomes of immunotherapy.
Molecular evidence of viral DNA in non-small cell lung cancer and non-neoplastic lung
Background: Although ∼20% of human cancers are caused by microorganisms, only suspicion exists for a microbial cause of lung cancer. Potential infectious agents were investigated in non-small cell lung cancer (NSCLC) and non-neoplastic lung. Methods: Seventy NSCLC tumours (33 squamous cell carcinomas, 17 adenocarcinomas, 10 adenocarcinomas with lepidic spread, and 10 oligometastases) and 10 non-neoplastic lung specimens were evaluated for molecular evidence of microorganisms. Tissues were subjected to the Lawrence Livermore Microbial Detection Array, an oncovirus panel of the International Agency for Research on Cancer, and human papillomavirus (HPV) genotyping. Associations were examined between microbial prevalence, clinical characteristics, and p16 and EGFR expression. Results: Retroviral DNA was observed in 85% squamous cell carcinomas, 47% adenocarcinomas, and 10% adenocarcinomas with lepidic spread. Human papillomavirus DNA was found in 69% of squamous cell carcinomas with 30% containing high-risk HPV types. No significant viral DNA was detected in non-neoplastic lung. Patients with tumours containing viral DNA experienced improved long-term survival compared with patients with viral DNA-negative tumours. Conclusions: Most squamous cell carcinomas and adenocarcinomas contained retroviral DNA and one-third of squamous cell carcinomas contained high-risk HPV DNA. Viral DNA was absent in non-neoplastic lung. Trial results encourage further study of the viral contribution to lung carcinogenesis.
The lung microbiome: progress and promise
The healthy lung was long thought of as sterile, but recent advances using molecular sequencing approaches have detected bacteria at low levels. Healthy lung bacteria largely reflect communities present in the upper respiratory tract that enter the lung via microaspiration, which is balanced by mechanical and immune clearance and likely involves limited local replication. The nature and dynamics of the lung microbiome, therefore, differ from those of ecological niches with robust self-sustaining microbial communities. Aberrant populations (dysbiosis) have been demonstrated in many pulmonary diseases not traditionally considered microbial in origin, and potential pathways of microbe-host crosstalk are emerging. The question now is whether and how dysbiotic microbiota contribute to initiation or perpetuation of injury. The fungal microbiome and virome are less well studied. This Review highlights features of the lung microbiome, unique considerations in studying it, examples of dysbiosis in selected disease, emerging concepts in lung microbiome-host interactions, and critical areas for investigation.
HPV and lung cancer: A systematic review and meta‐analysis
Background Lung cancer has emerged as a global public health problem and is the most common cause of cancer deaths by absolute cases globally. Besides tobacco, smoke infectious diseases such as human papillomavirus (HPV) might be involved in the pathogenesis of lung cancer. However, data are inconsistent due to differences in study design and HPV detection methods. Aim A systematic meta‐analysis was performed to examine the presence of HPV‐infection with lung cancer. Methods and Results All studies in all languages were considered for the search concepts “lung cancer” and “HPV” if data specific to HPV prevalence in lung cancer tissue were given. This included Journal articles as well as s and conference reports. As detection method, only HPV PCR results from fresh frozen and paraffin‐embedded tissue were included. Five bibliographic databases and three registers of clinical trials including MEDLINE, Embase, Cochrane Library, and ClinicalTrials.gov were searched through February 2020. A total 4298 publications were identified, and 78 publications were selected, resulting in 9385 included lung cancer patients. A meta‐analysis of 15 case‐control studies with n = 2504 patients showed a weighted overall prevalence difference of 22% (95% CI: 12%‐33%; P < .001) and a weighted overall 4.7‐fold (95% CI: 2.7‐8.4; P < .001) increase of HPV prevalence in lung cancer patients compared to controls. Overall, HPV prevalence amounted to 13.5% being highest in Asia (16.6%), followed by America (12.8%), and Europe (7.0%). A higher HPV prevalence was found in squamous cell carcinoma (17.9%) compared to adenocarcinoma (P < .01) with significant differences in geographic patterns. HPV genotypes 16 and 18 were the most prevalent high‐risk genotypes identified. Conclusion In conclusion, our review provides convincing evidence that HPV infection increases the risk of developing lung cancer.
The genomic landscape of Epstein-Barr virus-associated pulmonary lymphoepithelioma-like carcinoma
Pulmonary lymphoepithelioma-like carcinoma (LELC) is a rare and distinct subtype of primary lung cancer characterized by Epstein-Barr virus (EBV) infection. Herein, we reported the mutational landscape of pulmonary LELC using whole-exome sequencing, targeted deep sequencing and single-nucleotide polymorphism arrays. We identify a low degree of somatic mutation but widespread existence of copy number variations. We reveal predominant signature 2 mutations and frequent loss of type I interferon genes that are involved in the host-virus counteraction. Integrated analysis shows enrichment of genetic lesions affecting several critical pathways, including NF-κB, JAK/STAT, and cell cycle. Notably, multi-dimensional comparison unveils that pulmonary LELC resemble NPC but are clearly different from other lung cancers, natural killer/T-cell lymphoma or EBV-related gastric cancer in terms of genetic features. In all, our study illustrates a distinct genomic landscape of pulmonary LELC and provides a road map to facilitate genome-guided personalized treatment. The rare lung cancer subtype pulmonary lymphoepithelioma-like carcinoma is linked to Epstein-Barr virus infection. Here, the authors provide a mutational landscape for this cancer, showing a low burden of somatic mutations and high prevalence of copy number variations.
Early histologic findings of pulmonary SARS-CoV-2 infection detected in a surgical specimen
Despite the current pandemic season, reports on pathologic features of coronavirus disease 19 (Covid-19) are exceedingly rare at the present time. Here we describe the pathologic features of early lung involvement by Covid-19 in a surgical sample resected for carcinoma from a patient who developed SARS-CoV-2 infection soon after surgery. The main histologic findings observed were pneumocyte damage, alveolar hemorrhages with clustering of macrophages, prominent and diffuse neutrophilic margination within septal vessels, and interstitial inflammatory infiltrates, mainly represented by CD8+ T lymphocytes. These features are similar to those previously described in SARS-CoV-1 infection. Subtle histologic changes suggestive pulmonary involvement by Covid-19 may be accidentally encountered in routine pathology practice, especially when extensive sampling is performed for histology. These findings should be carefully interpreted in light of the clinical context of the patient and could prompt a pharyngeal swab PCR test to rule out the possibility of SARS-CoV-2 infection in asymptomatic patients.
IL-10 Counteracts IFN-γ to Alleviate Acute Lung Injury in a Viral-Bacterial Superinfection Model
Immune activation is essential for lung control of viral and bacterial infection, but an overwhelming inflammatory response often leads to the onset of acute respiratory distress syndrome. IL-10 plays a crucial role in regulating the balance between antimicrobial immunity and immunopathology. In the present study, we investigated the role of IL-10 in acute lung injury induced by influenza A virus and methicillin-resistant coinfection. This unique coinfection model resembles patients with acute pneumonia undergoing appropriate antibiotic therapies. Using global IL-10 and IL-10 receptor gene-deficient mice, as well as neutralizing antibodies, we show that IL-10 deficiency promotes IFN-γ-dominant cytokine responses and triggers acute animal death. Interestingly, this extreme susceptibility is fully preventable by IFN-γ neutralization during coinfection. Further studies using mice with deletion in selective myeloid subsets reveal that IL-10 primarily acts on mononuclear phagocytes to prevent IFN-γ/TNF-α hyperproduction and acute mortality. Importantly, this antiinflammatory IL-10 signaling is independent of its inhibitory effect on antiviral and antibacterial defense. Collectively, our results demonstrate a key mechanism of IL-10 in preventing hypercytokinemia and acute respiratory distress syndrome pathogenesis by counteracting the IFN-γ response.
Disruption of pulmonary microvascular endothelial barrier by dysregulated claudin-8 and claudin-4: uncovered mechanisms in porcine reproductive and respiratory syndrome virus infection
The pulmonary endothelium is a dynamic and metabolically active monolayer of endothelial cells. Dysfunction of the pulmonary endothelial barrier plays a crucial role in the acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), frequently observed in the context of viral pneumonia. Dysregulation of tight junction proteins can lead to the disruption of the endothelial barrier and subsequent leakage. Here, the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) served as an ideal model for studying ALI and ARDS. The alveolar lavage fluid of pigs infected with HP-PRRSV, and the supernatant of HP-PRRSV infected pulmonary alveolar macrophages were respectively collected to treat the pulmonary microvascular endothelial cells (PMVECs) in Transwell culture system to explore the mechanism of pulmonary microvascular endothelial barrier leakage caused by viral infection. Cytokine screening, addition and blocking experiments revealed that proinflammatory cytokines IL-1β and TNF-α, secreted by HP-PRRSV-infected macrophages, disrupt the pulmonary microvascular endothelial barrier by downregulating claudin-8 and upregulating claudin-4 synergistically. Additionally, three transcription factors interleukin enhancer binding factor 2 (ILF2), general transcription factor III C subunit 2 (GTF3C2), and thyroid hormone receptor-associated protein 3 (THRAP3), were identified to accumulate in the nucleus of PMVECs, regulating the transcription of claudin-8 and claudin-4. Meanwhile, the upregulation of ssc-miR-185 was found to suppress claudin-8 expression via post-transcriptional inhibition. This study not only reveals the molecular mechanisms by which HP-PRRSV infection causes endothelial barrier leakage in acute lung injury, but also provides novel insights into the function and regulation of tight junctions in vascular homeostasis.
Current status of mesenchymal stem cell therapy for immune/inflammatory lung disorders: Gleaning insights for possible use in COVID-19
The broad immunomodulatory properties of human mesenchymal stem cells (MSCs) have allowed for wide application in regenerative medicine as well as immune/inflammatory diseases, including unmatched allogeneic use. The novel coronavirus disease COVID‐19 has unleashed a pandemic in record time accompanied by an alarming mortality rate mainly due to pulmonary injury and acute respiratory distress syndrome. Because there are no effective preventive or curative therapies currently, MSC therapy (MSCT) has emerged as a possible candidate despite the lack of preclinical data of MSCs for COVID‐19. Interestingly, MSCT preclinical data specifically on immune/inflammatory disorders of the lungs were among the earliest to be reported in 2003, with the first clinical use of MSCT for graft‐vs‐host disease reported in 2004. Since these first reports, preclinical data showing beneficial effects of MSC immunomodulation have accumulated substantially, and as a consequence, over a third of MSCT clinical trials now target immune/inflammatory diseases. There is much preclinical evidence for MSCT in noninfectious—including chronic obstructive pulmonary disease, asthma, and idiopathic pulmonary fibrosis—as well as infectious bacterial immune/inflammatory lung disorders, with data generally demonstrating therapeutic effects; however, for infectious viral pulmonary conditions, the preclinical evidence is more scarce with some inconsistent outcomes. In this article, we review the mechanistic evidence for clinical use of MSCs in pulmonary immune/inflammatory disorders, and survey the ongoing clinical trials—including for COVID‐19—of MSCT for these diseases, with some perspectives and comment on MSCT for COVID‐19. Mesenchymal stem cell (MSC) therapy for immune/inflammatory pulmonary disorders. Broad immunomodulatory properties of human MSCs and MSC‐derived products allow for therapeutic use in noninfectious—including chronic obstructive pulmonary disease, asthma, and idiopathic pulmonary fibrosis—and a number of infectious immune/inflammatory lung disorders.
Expression of p16 and p53 in non-small-cell lung cancer: clinicopathological correlation and potential prognostic impact
p16 and p53 are frequently altered intracellular pathways in cancers. We investigated the aberrant expression of p16 and its relationship with p53 and HPV status in primary non-small-cell lung carcinoma. Lung tumor tissue microarray (n = 163), immunohistochemical study of p16 and p53, and HPV hybridization were analyzed. p16 and p53 were detected in 50.7 and 57.3% of adenocarcinoma (ADCs; n = 75), and 35.2 and 63.6% of squamous cell carcinoma (n = 88). HPV was detected in 16 and 10.2% of ADC and squamous cell carcinoma. In ADCs, p16 positive tumors demonstrated a favorable median overall survival time of 60.9 months, compared with p16 negative tumors of 46.9 months (p < 0.05). Furthermore, we did not find significant relationships between p16 expression and HPV status, nor with p53 expression. p16 play an unique role in lung cancer survival. The mechanism of p16 needs to be further studied.