Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,809
result(s) for
"Macaca mulatta - genetics"
Sort by:
Gene expression across mammalian organ development
2019
The evolution of gene expression in mammalian organ development remains largely uncharacterized. Here we report the transcriptomes of seven organs (cerebrum, cerebellum, heart, kidney, liver, ovary and testis) across developmental time points from early organogenesis to adulthood for human, rhesus macaque, mouse, rat, rabbit, opossum and chicken. Comparisons of gene expression patterns identified correspondences of developmental stages across species, and differences in the timing of key events during the development of the gonads. We found that the breadth of gene expression and the extent of purifying selection gradually decrease during development, whereas the amount of positive selection and expression of new genes increase. We identified differences in the temporal trajectories of expression of individual genes across species, with brain tissues showing the smallest percentage of trajectory changes, and the liver and testis showing the largest. Our work provides a resource of developmental transcriptomes of seven organs across seven species, and comparative analyses that characterize the development and evolution of mammalian organs.
The transcriptomes of seven major organs across developmental stages from several mammalian species are used for comparative analyses of gene expression and evolution across organ development.
Journal Article
An anatomically comprehensive atlas of the adult human brain transcriptome
by
Dolbeare, Tim A.
,
Zielke, H. Ronald
,
Guillozet-Bongaarts, Angela L.
in
631/208/212/2019
,
631/378/2583
,
Adult
2012
Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ∼900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography—the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.
Laser microdissection and microarrays are used to assess 900 precise subdivisions of the brains from three healthy men with 60,000 gene expression probes; the resulting atlas allows comparisons between humans and other animals, and will facilitate studies of human neurological and psychiatric diseases.
Atlas of the brain
High-resolution maps of genome-wide gene expression have been available for mice for a few years, but only relatively coarse equivalents have been published for the human brain because of the challenges presented by the 1,000-fold increase in size and the limited availability and quality of postmortem tissue. Now Michael Hawrylycz and colleagues at the Allen Institute for Brain Science in Seattle, Washington, have used laser microdissection and microarrays to assess 900 precise subdivisions in brains from two healthy men with 60,000 gene-expression probes. The resulting atlas, freely available at www.brain-map.org, allows comparisons between humans and other animals, and will facilitate studies of human neurological and psychiatric diseases. One early observation from the data is a human-specific pattern — compared with the mouse and rhesus monkey — for the calcium-binding protein CALB1 in the hippocampus.
Journal Article
The structure, function and evolution of a complete human chromosome 8
2021
The complete assembly of each human chromosome is essential for understanding human biology and evolution
1
,
2
. Here we use complementary long-read sequencing technologies to complete the linear assembly of human chromosome 8. Our assembly resolves the sequence of five previously long-standing gaps, including a 2.08-Mb centromeric α-satellite array, a 644-kb copy number polymorphism in the β-defensin gene cluster that is important for disease risk, and an 863-kb variable number tandem repeat at chromosome 8q21.2 that can function as a neocentromere. We show that the centromeric α-satellite array is generally methylated except for a 73-kb hypomethylated region of diverse higher-order α-satellites enriched with CENP-A nucleosomes, consistent with the location of the kinetochore. In addition, we confirm the overall organization and methylation pattern of the centromere in a diploid human genome. Using a dual long-read sequencing approach, we complete high-quality draft assemblies of the orthologous centromere from chromosome 8 in chimpanzee, orangutan and macaque to reconstruct its evolutionary history. Comparative and phylogenetic analyses show that the higher-order α-satellite structure evolved in the great ape ancestor with a layered symmetry, in which more ancient higher-order repeats locate peripherally to monomeric α-satellites. We estimate that the mutation rate of centromeric satellite DNA is accelerated by more than 2.2-fold compared to the unique portions of the genome, and this acceleration extends into the flanking sequence.
The complete assembly of human chromosome 8 resolves previous gaps and reveals hidden complex forms of genetic variation, enabling functional and evolutionary characterization of primate centromeres.
Journal Article
A comprehensive transcriptional map of primate brain development
by
Dolbeare, Tim A.
,
Olson, Eric
,
White, Cassandra
in
631/378/2571/2574
,
631/378/2571/2575
,
631/378/2583
2016
The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high-resolution transcriptional atlas of rhesus monkey (
Macaca mulatta
) brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical division of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons. Cortical layers and areas acquire adult-like molecular profiles surprisingly late in postnatal development. Disparate cell populations exhibit distinct developmental timing of gene expression, but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, although approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny compared to monkey.
A high-resolution gene expression atlas of prenatal and postnatal brain development of rhesus monkey charts global transcriptional dynamics in relation to brain maturation, while comparative analysis reveals human-specific gene trajectories; candidate risk genes associated with human neurodevelopmental disorders tend to be co-expressed in disease-specific patterns in the developing monkey neocortex.
Gene expression in the primate brain
Following the publication of the mouse and human brain gene expression atlases in recent years, Ed Lein and colleagues now present a high-resolution transcriptional atlas of pre- and post-natal brain development for the rhesus monkey — the dominant non-human primate model for human brain development and disease. The data charts global transcriptional dynamics in relation to brain maturation, while comparative analysis reveals human-specific gene trajectories; candidate risk genes associated with human neurodevelopmental disorders tend to be co-expressed in disease-specific patterns in the developing monkey neocortex.
Journal Article
Developmental dynamics of lncRNAs across mammalian organs and species
by
Marin, Ray
,
Sarropoulos, Ioannis
,
Cardoso-Moreira, Margarida
in
38/39
,
631/136/2060
,
631/181/2806
2019
Although many long noncoding RNAs (lncRNAs) have been identified in human and other mammalian genomes, there has been limited systematic functional characterization of these elements. In particular, the contribution of lncRNAs to organ development remains largely unexplored. Here we analyse the expression patterns of lncRNAs across developmental time points in seven major organs, from early organogenesis to adulthood, in seven species (human, rhesus macaque, mouse, rat, rabbit, opossum and chicken). Our analyses identified approximately 15,000 to 35,000 candidate lncRNAs in each species, most of which show species specificity. We characterized the expression patterns of lncRNAs across developmental stages, and found many with dynamic expression patterns across time that show signatures of enrichment for functionality. During development, there is a transition from broadly expressed and conserved lncRNAs towards an increasing number of lineage- and organ-specific lncRNAs. Our study provides a resource of candidate lncRNAs and their patterns of expression and evolutionary conservation across mammalian organ development.
A transcriptome dataset from seven organs and seven mammalian species throughout development is used to analyse the expression of long noncoding RNAs in tissues within and between species, and at different stages of organ development.
Journal Article
An optogenetic toolbox designed for primates
2011
Here the authors describe a set of new optogenetic tools for use in primates that are meant to address the unique constraints of working with this species. They characterize opsin expression, the reliability of optogenetic stimulation and its effect on behavior, and methods for determining localization and expression levels prior to the completion of experiments.
Optogenetics is a technique for controlling subpopulations of neurons in the intact brain using light. This technique has the potential to enhance basic systems neuroscience research and to inform the mechanisms and treatment of brain injury and disease. Before launching large-scale primate studies, the method needs to be further characterized and adapted for use in the primate brain. We assessed the safety and efficiency of two viral vector systems (lentivirus and adeno-associated virus), two human promoters (human synapsin (
hSyn
) and human thymocyte-1 (
hThy-1
)) and three excitatory and inhibitory mammalian codon-optimized opsins (channelrhodopsin-2, enhanced
Natronomonas pharaonis
halorhodopsin and the step-function opsin), which we characterized electrophysiologically, histologically and behaviorally in rhesus monkeys (
Macaca mulatta
). We also introduced a new device for measuring
in vivo
fluorescence over time, allowing minimally invasive assessment of construct expression in the intact brain. We present a set of optogenetic tools designed for optogenetic experiments in the non-human primate brain.
Journal Article
Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration
2013
Key Points
Recently developed genomic technologies have shed light on the genomic composition of the ancient Y chromosomes of some primates and
Drosophila melanogaster
and have shown that Y chromosomes in these species largely conform to the previously held view of being degenerate.
The presence of evolutionary strata confirmed by genome sequencing of the sex chromosomes supports that Y-chromosome degeneration occurred through successive arrest of recombination over time. In addition, the enrichment of Y chromosomes for genes of male-beneficial functions suggests that sexually antagonistic mutations may have a role in Y-chromosome evolution.
Genome sequencing of young Y chromosomes in plants and neo-Y chromosomes in
Drosophila
spp. have provided insight into the molecular processes that trigger initiation of Y-chromosome degeneration. Empirical evidence suggests that gene silencing occurs before pseudogenization.
Empirical observations in
Drosophila
neo-sex chromosomes, primate Y chromosomes and theoretical models and computer simulations show that degeneration is not a linear process, and so Y chromosomes in these species will probably not completely degenerate in the future.
The Y chromosomes of many species, including humans, are gene-poor and degenerate. The recent application of genome-wide technologies to evolutionarily old and young Y chromosomes has provided insight into the processes that have shaped them and their future.
The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in
Drosophila
species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome.
Journal Article
Single-nucleus transcriptomic landscape of primate hippocampal aging
2021
The hippocampus plays a crucial role in learning and memory, and its progressive deteriorationwith age is functionally linked to a variety ofhuman neurodegenerative diseases.Yet a systematic profiling of the aging effects on various hippocampal cell types in primates is still missing. Here, we reported a variety of new aging-associated phenotypic changes of the primate hippocampus. These include, in particular, increased DNA damage and heterochromatin erosion with time, alongside loss of proteostasis and elevated inflammation. To understand their cellular and molecular causes, we established the first single-nucleus transcriptomic atlas of primate hippocampal aging. Among the 12 identified cell types, neural transiently amplifying progenitor cell (TAPC) and microglia were most affected by aging. In-depth dissection of gene-expression dynamics revealed impaired TAPC division and compromised neuronal unction along the neurogenesis trajectory; additionally elevated pro-inflammatory responses in the agedmicroglia and oligodendrocyte, as well as dysregulated coagulation pathways in the aged endothelial cells may contribute to a hostile microenvironment for neurogenesis. This rich resource for understanding primate hippocampal aging may provide potential diagnostic biomarkers and therapeutic interventions against age-related neurodegenerative diseases.
Journal Article
Transcriptional modulation of the developing immune system by early life social adversity
2012
To identify molecular mechanisms by which early life social conditions might influence adult risk of disease in rhesus macaques (Macaca mulatta), we analyze changes in basal leukocyte gene expression profiles in 4-mo-old animals reared under adverse social conditions. Compared with the basal condition of maternal rearing (MR), leukocytes from peer-reared (PR) animals and PR animals provided with an inanimate surrogate mother (surrogate/peer reared, SPR) show enhanced expression of genes involved in inflammation, cytokine signaling, and T-lymphocyte activation, and suppression of genes involved in several innate antimicrobial defenses including type I interferon (IFN) antiviral responses. Promoter-based bioinformatic analyses implicate increased activity of CREB and NF-κB transcription factors and decreased activity of IFN response factors (IRFs) in structuring the observed differences in gene expression. Transcript origin analyses identify monocytes and CD4 ⁺ T lymphocytes as primary cellular mediators of transcriptional up-regulation and B lymphocytes as major sources of down-regulated genes. These findings show that adverse social conditions can become embedded within the basal transcriptome of primate immune cells within the first 4 mo of life, and they implicate sympathetic nervous system-linked transcription control pathways as candidate mediators of those effects and potential targets for health-protective intervention.
Journal Article
Ancient hybridization and strong adaptation to viruses across African vervet monkey populations
by
Wilson, Richard K
,
Schmitt, Christopher A
,
Jasinska, Anna J
in
45/23
,
631/208/457
,
631/250/255/1901
2017
Analysis of whole-genome sequencing data from 163 vervet monkeys from Africa and the Caribbean shows high diversity among taxa and identifies signatures of selection. Selection signals affect viral processes, and genes that show response to SIV in vervets but not macaques have elevated selection scores.
Vervet monkeys are among the most widely distributed nonhuman primates, show considerable phenotypic diversity, and have long been an important biomedical model for a variety of human diseases and in vaccine research. Using whole-genome sequencing data from 163 vervets sampled from across Africa and the Caribbean, we find high diversity within and between taxa and clear evidence that taxonomic divergence was reticulate rather than following a simple branching pattern. A scan for diversifying selection across taxa identifies strong and highly polygenic selection signals affecting viral processes. Furthermore, selection scores are elevated in genes whose human orthologs interact with HIV and in genes that show a response to experimental simian immunodeficiency virus (SIV) infection in vervet monkeys but not in rhesus macaques, suggesting that part of the signal reflects taxon-specific adaptation to SIV.
Journal Article