Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
184 result(s) for "Maghemite nanoparticles"
Sort by:
Maghemite Nanoparticles Acts as Nanozymes, Improving Growth and Abiotic Stress Tolerance in Brassica napus
Yttrium doping-stabilized γ-Fe 2 O 3 nanoparticles were studied for its potential to serve as a plant fertilizer and, through enzymatic activity, support drought stress management. Levels of both hydrogen peroxide and lipid peroxidation, after drought, were reduced when γ-Fe 2 O 3 nanoparticles were delivered by irrigation in a nutrient solution to Brassica napus plants grown in soil. Hydrogen peroxide was reduced from 151 to 83 μM g −1 compared to control, and the malondialdehyde formation was reduced from 36 to 26 mM g −1 . Growth rate of leaves was enhanced from 33 to 50% growth compared to fully fertilized plants and SPAD-measurements of chlorophyll increased from 47 to 52 suggesting improved agronomic properties by use of γ-Fe 2 O 3 nanoparticles as fertilizer as compared to chelated iron.
Nanocomposite Furcellaran Films—the Influence of Nanofillers on Functional Properties of Furcellaran Films and Effect on Linseed Oil Preservation
Nanocomposite films that were based on furcellaran (FUR) and nanofillers (carbon quantum dots (CQDs), maghemite nanoparticles (MAN), and graphene oxide (GO)) were obtained by the casting method. The microstructure, as well as the structural, physical, mechanical, antimicrobial, and antioxidant properties of the films was investigated. The incorporation of MAN and GO remarkably increased the tensile strength of furcellaran films. However, the water content, solubility, and elongation at break were significantly reduced by the addition of the nanofillers. Moreover, furcellaran films containing the nanofillers exhibited potent free radical scavenging ability. FUR films with CQDs showed an inhibitory effect on the growth of Staphylococcus aureus and Escherichia coli. The nanocomposite films were used to cover transparent glass containers to study the potential UV-blocking properties in an oil oxidation test and compare with tinted glass. The samples were irradiated for 30 min. with UV-B and then analyzed for oxidation markers (peroxide value, free fatty acids, malondialdehyde content, and degradation of carotenoids). The test showed that covering the transparent glass with MAN films was as effective in inhibiting the oxidation as the use of tinted glass, while the GO and CQDs films did not inhibit oxidation. It can be concluded that the active nanocomposite films can be used as a desirable material for food packaging.
Au, Pd and maghemite nanofunctionalized hydroxyapatite scaffolds for bone regeneration
Nanotechnology plays a key role in the development of innovative scaffolds for bone tissue engineering (BTE) allowing the incorporation of nanomaterials able to improve cell proliferation and differentiation. In this study, Mg-HA-Coll type I scaffolds (Mg-HA-based scaffolds) were nanofunctionalized with gold nanorods (Au NRs), palladium nanoparticles (Pd NPs) and maghemite nanoparticles (MAG NPs). Nanofunctionalized Mg-HA-based scaffolds (NF-HA-Ss) were tested for their ability to promote both the proliferation and the differentiation of adipose-derived mesenchymal stem cells (hADSCs). Results clearly highlight that MAG nanofunctionalization substantially improves cell proliferation up to 70% compared with the control (Mg-HA-based scaffold), whereas both Au NRs and Pd NPs nanofunctionalization induce a cell growth inhibition of 94% and 89%, respectively. Similar evidences were found for the osteoinductive properties showing relevant calcium deposits (25% higher than the control) for MAG nanofunctionalization, while a decreasing of cell differentiation (20% lower than the control) for both Au NRs and Pd NPs derivatization. These results are in agreement with previous studies that found cytotoxic effects for both Pd NPs and Au NRs. The excellent improvement of both osteoconductivity and osteoinductivity of the MAG NF-HA-S could be attributed to the high intrinsic magnetic field of superparamagnetic MAG NPs. These findings may pave the way for the development of innovative nanostructured scaffolds for BTE.
Arsenic removal from aqueous solutions by mixed magnetite–maghemite nanoparticles
In this study, magnetite–maghemite nanoparticles were used to treat arsenic-contaminated water. X-ray photoelectron spectroscopy (XPS) studies showed the presence of arsenic on the surface of magnetite–maghemite nanoparticles. Theoretical multiplet analysis of the magnetite–maghemite mixture (Fe 3 O 4 -γFe 2 O 3 ) reported 30.8% of maghemite and 69.2% of magnetite. The results show that redox reaction occurred on magnetite–maghemite mixture surface when arsenic was introduced. The study showed that, apart from pH, the removal of arsenic from contaminated water also depends on contact time and initial concentration of arsenic. Equilibrium was achieved in 3 h in the case of 2 mg/L of As(V) and As(III) concentrations at pH 6.5. The results further suggest that arsenic adsorption involved the formation of weak arsenic-iron oxide complexes at the magnetite–maghemite surface. In groundwater, arsenic adsorption capacity of magnetite–maghemite nanoparticles at room temperature, calculated from the Langmuir isotherm, was 80 μmol/g and Gibbs free energy (∆G 0 , kJ/mol) for arsenic removal was −35 kJ/mol, indicating the spontaneous nature of adsorption on magnetite–maghemite nanoparticles.
The influence of female mice age on biodistribution and biocompatibility of citrate-coated magnetic nanoparticles
Magnetic nanoparticles (MNPs) have been successfully tested for several purposes in medical applications. However, knowledge concerning the effects of nanostructures on elderly organisms is remarkably scarce. To fill part of this gap, this work aimed to investigate biocompatibility and bio-distribution aspects of magnetic nanoparticles coated with citrate (NpCit) in both elderly and young healthy mice. NpCit (2.4 mg iron) was administered intraperitoneally, and its toxicity was evaluated for 28 days through clinical, biochemical, hematological, and histopathological examinations. In addition, its biodistribution was evaluated by spectrometric (inductively coupled plasma optical emission spectrometry) and histological methods. NpCit presented age-dependent effects, inducing very slight and temporary biochemical and hematological changes in young animals. These changes were even weaker than the effects of the aging process, especially those related to the hematological data, tumor necrosis factor alpha, and nitric oxide levels. On the other hand, NpCit showed a distinct set of results in the elderly group, sometimes reinforcing (decrease of lymphocytes and increase of monocytes) and sometimes opposing (erythrocyte parameters and cytokine levels) the aging changes. Leukocyte changes were still observed on the 28th day after treatment in the elderly group. Slight evidence of a decrease in liver and immune functions was detected in elderly mice treated or not treated with NpCit. It was noted that tissue damage or clinical changes related to aging or to the NpCit treatment were not observed. As detected for aging, the pattern of iron biodistribution was significantly different after NpCit administration: extra iron was detected until the 28th day, but in different organs of elderly (liver and kidneys) and young (spleen, liver, and lungs) mice. Taken together, the data show NpCit to be a stable and reasonably biocompatible sample, especially for young mice, and thus appropriate for biomedical applications. The data showed important differences after NpCit treatment related to the animals' age, and this emphasizes the need for further studies in older animals to appropriately extend the benefits of nanotechnology to the elderly population.
Maghemite nanoparticles coated by methacrylamide-based polymer for magnetic particle imaging
A wise selection of tracers is critical for magnetic particle imaging (MPI). Most of the current tracers are based on superparamagnetic iron oxide nanoparticles (SPIONs) with a suitable coating. We prepared maghemite cores (γ-Fe2O3) by coprecipitation of Fe(II) and Fe(III) salts with ammonium hydroxide followed by oxidation with hydrogen peroxide and stabilization as an anionic (γ-Fe2O3⊖) or cationic colloid (γ-Fe2O3⨁). The cores were coated by poly(N-(2-hydroxypropyl)methacrylamide)-co-N-[2-(hydroxyamino)-2-oxo-ethyl]-2-methyl-prop-2-enamide. The particles were characterized by dynamic light scattering, transmission electron microscopy, X-ray diffraction, Mössbauer spectroscopy, tested in vitro in a field-free point MPI scanner, and compared to nanoparticles prepared by oxidation with sodium hypochlorite and to the commercially available Resovist®. The cores had an average diameter of 8.0 nm (γ-Fe2O3⨁) and 8.7 nm (γ-Fe2O3⊖); the hydrodynamic diameter was 88 nm. Zeta potential values for both positively charged (+52 mV) and negatively charged particles (–60 mV) provided for good colloidal stabilization. Spinel structure of maghemite was confirmed by Mössbauer spectroscopy. The uncoated γ-Fe2O3⨁ particles yielded an MPI signal lower (by 16 %) than Resovist; the coated ones reached 88 % of the Resovist signal. Anionic γ-Fe2O3⊖ particles reached a higher (uncoated particles, by 15 %) or comparable (coated ones) signal relative to Resovist with a substantially lower signal dispersion. Control particles prepared by oxidation with sodium hypochlorite scored the weakest results. To conclude, a suitable size, narrow size distribution, and colloidal stability predispose the synthetized particles for use as a tracer for MPI. The anionic particles provided a higher signal with a lower dispersion than commercial tracers.
Synthesis and Characterization of Hematite, Magnetite and Maghemite Supported on Silica Gel
A new method for obtaining nanosized particles of iron oxides using porous silica gel is proposed. In situ magnetometry was used to study the reduction of hematite deposited on silica gel during the thermolysis of glucose. The formed magnetite and maghemite obtained by subsequent oxidation of the magnetite were studied using X-ray diffraction and Mossbauer spectroscopy. It was shown that both the size of the oxide particles and the phase composition significantly depended on the porous structure of the silica gel. In particular, the formation of superparamagnetic maghemite particles on silica gels with pore sizes of 30, 15 and 10 nm was demonstrated.
Data-Driven Machine Learning Intelligent Tools for Predicting Chromium Removal in an Adsorption System
This study investigates chromium removal onto modified maghemite nanoparticles in batch experiments based on a central composite design. The effect of modified maghemite nanoparticles on the adsorptive removal of chromium was quantitatively elucidated by fitting the experimental data using artificial neural network (ANN) and adaptive neuro-fuzzy interference system (ANFIS) modeling approaches. The ANN and ANFIS models, relating the inputs, i.e., pH, adsorbent dose, and initial chromium concentration to the output, i.e., chromium removal efficiency (RE), were developed by comparing the predicted value with that of the experimental values. The RE of chromium ranged from 49.58% to 92.72% under the influence of varying pH (i.e., 2.6–9.4) and adsorbent dose, i.e., 0.8 g/L to 9.2 g/L. The developed ANN model fits the experimental data exceptionally well with correlation coefficients of 1.000 and 0.997 for training and testing, respectively. In addition, the Pearson’s Chi-square measure (χ2) of 0.0004 and 0.0673 for the ANN and ANFIS models, respectively, indicated the superiority of ANN over ANFIS. However, a small discrepancy in the predictability of the ANFIS model was observed owing to the fuzzy rule-based complexity and overtraining of data. Thus, the developed models can be used for the online prediction of RE onto synthesized maghemite nanoparticles with different sets of input parameters and it can also predict the operational errors in the system.
Fabrication of functional magnetic cellulose nanocomposite membranes for controlled adsorption of protein
Cellulose nanocomposite membranes with predesigned functions were prepared and evaluated as adsorbents for protein adsorption. Maghemite nanoparticles (MNP) with amino groups and carboxyl groups were obtained by modifying maghemite nanoparticles with glycine and sodium citrate, respectively. The functional maghemite nanoparticles were then dispersed into NaOH/urea aqueous solution for dissolving cellulose, and the magnetic membranes were constructed using a tape casting method. The modified MNP were evaluated by zeta potential and FTIR measurements. The developed cellulose nanocomposite membranes possess microporous structure with porosity higher than 88.3%. The introduction of MNP with carboxyl groups into the cellulose nanocomposite membranes could absorb the highest amount of protein at a pH of 4, and gradually decreased with the increase of pH from 4 to 6. However, cellulose nanocomposite membranes with introduced MNP with amino groups absorb the highest and lowest amount of protein at pH of 5 and 4, respectively. This study provides a green and simple method for the design of multifunctional cellulose nanocomposite membranes for controllable protein adsorption, and is expected to open new venues for biomolecule binding by choice of various nanofillers and pH of the medium.
Correlating the microstructural, optical, electronic and magnetic properties of γ-Fe2-xPrxO3 nanoparticles: a defective spinel cubic iron oxide
This article establishes the correlations among structural, electronic, optical and magnetic properties of rare-earth Pr ion-doped nanocrystalline maghemite samples. All the samples with a generic formula γ-Fe 2-x Pr x O 3 ( x  = 0.00, 0.02, 0.04 and 0.06) were fabricated using the conventional co-precipitation method. Powder x-ray diffraction profile verified the crystallographic phase-purity together with the presence of cubic spinel structure of all the samples. Mean sizes of as-synthesized samples containing tiny crystallites were ranged from 10 to 21 nm. Compressive strain existed inside the nanocrystals as confirmed by Williamson–Hall plots. An indirect optical band gap within the range of 1.27 eV–1.95 eV was obtained using Tauc plots. Frequency-dependent conductivity measurement revealed that the hopping of electrons was the primary charge transfer process for all the samples. Because of the completely paramagnetic character of Pr 3+ ions near room temperature, all the magnetic parameters like saturation magnetization, coercivity, magnetic moment and anisotropy constant were noted to decrease linearly for higher Pr content nanosized maghemite samples as verified by the room temperature hysteresis curves.