Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
9,383
result(s) for
"Malondialdehyde - metabolism"
Sort by:
2′-Fucosyllactose Remits Colitis-Induced Liver Oxygen Stress through the Gut–Liver–Metabolites Axis
by
Gao, Yanan
,
Fan, Linlin
,
Wang, Jiaqi
in
2′-fucosyllactose (2′-FL)
,
Acetic acid
,
Akkermansia muciniphila
2022
Liver oxygen stress is one of the main extraintestinal manifestations of colitis and 5% of cases develop into a further liver injury and metabolic disease. 2′-fucosyllactose (2′-FL), a main member of human milk oligosaccharides (HMOs), has been found to exert efficient impacts on remitting colitis. However, whether 2′-FL exerts the function to alleviate colitis-induced liver injury and how 2′-FL influences the metabolism via regulating gut microbiota remain unknown. Herein, in our study, liver oxygen stress was measured by measuring liver weight and oxygen-stress-related indicators. Then, 16S full-length sequencing analysis and non-target metabolome in feces were performed to evaluate the overall responses of metabolites and intestinal bacteria after being treated with 2′-FL (400 mg/kg b.w.) in colitis mice. The results showed that, compared with the control group, the liver weight of colitis mice was significantly decreased by 18.30% (p < 0.05). After 2′-FL treatment, the liver weight was significantly increased by 12.65% compared with colitis mice (p < 0.05). Meanwhile, they exhibited higher levels of oxidation in liver tissue with decreasing total antioxidant capacity (T-AOC) (decreased by 17.15%) and glutathione (GSH) levels (dropped by 22.68%) and an increasing malondialdehyde (MDA) level (increased by 36.24%), and 2′-FL treatment could reverse those tendencies. Full-length 16S rRNA sequencing revealed that there were 39 species/genera differentially enriched in the control, dextran sulphate sodium (DSS), and DSS + 2′-FL groups. After treatment with 2′-FL, the intestinal metabolic patterns, especially glycometabolism and the lipid-metabolism-related process, in DSS mice were strikingly altered with 33 metabolites significantly down-regulated and 26 metabolites up-regulated. Further analysis found DSS induced a 40.01%, 41.12%, 43.81%, and 39.86% decline in acetic acid, propionic acid, butyric acid, and total short chain fatty acids (SCFAs) in colitis mice (all p < 0.05), respectively, while these were up-regulated to different degrees in the DSS + 2′-FL group. By co-analyzing the data of gut microbiota and metabolites, glycometabolism and lipid-metabolism-associated metabolites exhibited strong positive/negative relationships with Akkermansia_muciniphila (all p < 0.01) and Paraprevotella spp. (all p < 0.01), suggesting that the two species might play crucial roles in the process of 2′-FL alleviating colitis-induced liver oxygen stress. In conclusion, in the gut–liver–microbiotas axis, 2′-FL mediated in glucose and lipid-related metabolism and alleviated liver oxygen stress via regulating gut microbiota in the DSS-induced colitis model. The above results provide a new perspective to understand the probiotic function of 2′-FL.
Journal Article
miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma
2018
Ferroptosis is a regulated form of cell death driven by small molecules or conditions that induce lipid-based reactive oxygen species (ROS) accumulation. This form of iron-dependent cell death is morphologically and genetically distinct from apoptosis, necroptosis, and autophagy. miRNAs are known to play crucial roles in diverse fundamental biological processes. However, to date no study has reported miRNA-mediated regulation of ferroptosis. Here we show that miR-137 negatively regulates ferroptosis by directly targeting glutamine transporter SLC1A5 in melanoma cells. Ectopic expression of miR-137 suppressed SLC1A5, resulting in decreased glutamine uptake and malondialdehyde (MDA) accumulation. Meanwhile, antagomir-mediated inactivation of endogenous miR-137 increased the sensitivity of melanoma cells to erastin- and RSL3-induced ferroptosis. Importantly, knockdown of miR-137 increased the antitumor activity of erastin by enhancing ferroptosis both in vitro and in vivo. Collectively, these data indicate that miR-137 plays a novel and indispensable role in ferroptosis by inhibiting glutaminolysis and suggest a potential therapeutic approach for melanoma.
Journal Article
Complement factor H binds malondialdehyde epitopes and protects from oxidative stress
by
Handa, James T.
,
Skerka, Christine
,
Weismann, David
in
631/378/1689/1626
,
631/443/319
,
692/420/2780/262
2011
Oxidative stress and enhanced lipid peroxidation are linked to many chronic inflammatory diseases, including age-related macular degeneration (AMD). AMD is the leading cause of blindness in Western societies, but its aetiology remains largely unknown. Malondialdehyde (MDA) is a common lipid peroxidation product that accumulates in many pathophysiological processes, including AMD. Here we identify complement factor H (CFH) as a major MDA-binding protein that can block both the uptake of MDA-modified proteins by macrophages and MDA-induced proinflammatory effects
in vivo
in mice. The CFH polymorphism H402, which is strongly associated with AMD, markedly reduces the ability of CFH to bind MDA, indicating a causal link to disease aetiology. Our findings provide important mechanistic insights into innate immune responses to oxidative stress, which may be exploited in the prevention of and therapy for AMD and other chronic inflammatory diseases.
Causes of age-related macular degeneration
Age-related macular degeneration (AMD) is a leading cause of blindness in older people. A polymorphism in complement factor H (CFH) has been strongly associated with the disease, but the mechanism of the association has been unclear. Here it is shown that CFH binds specifically to the lipid peroxidation product, malondialdehyde, which builds up in AMD as a result of oxidative stress. Malondialdehyde and malondialdehyde-modified proteins induce inflammatory responses; CFH neutralizes this inflammatory potential both
in vitro
and in the mouse retina. A common CFH polymorphism associated with AMD leads to impaired binding to malondialdehyde, potentially explaining why homozygous individuals with this polymorphism have a 6–7-fold increased risk of developing the condition.
Journal Article
Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion
2021
Ferroptosis is an iron-dependent regulated necrosis. This study aims to evaluate the contribution of ferroptosis to ischemia or reperfusion injury, and lay a basis for precise therapy of myocardial infarction. The Sprague-Dawley (SD) rat hearts were subjected to ischemia for different duration or the hearts were treated with 1 h-ischemia plus different duration of reperfusion. The myocardial injury was assessed by biochemical assays and hematoxylin & eosin (HE) staining. The ferroptosis was evaluated with the levels of acyl-CoA synthetase long-chain family member 4 (ACSL4), glutathione peroxidase 4 (GPX4), iron, and malondialdehyde. Iron chelator (deferoxamine) was applied to verify the contribution of ferroptosis to ischemia and reperfusion injury. The results showed that ischemic injury (infarction and CK release) was getting worse with the extension of ischemia, but no significant changes in ferroptosis indexes (ACSL4, GPX4, iron, and malondialdehyde) in cardiac tissues were observed. Differently, the levels of ACSL4, iron, and malondialdehyde were gradually elevated with the extension of reperfusion concomitant with a decrease of GPX4 level. In the ischemia-treated rat hearts, no significant changes in myocardial injury were observed in the presence of deferoxamine, while in the ischemia/reperfusion-treated rat hearts, myocardial injury was markedly attenuated in the presence of deferoxamine concomitant with a reduction of ferroptosis. Based on these observations, we conclude that ferroptosis occurs mainly in the phase of myocardial reperfusion but not ischemia. Thus, intervention of ferroptosis exerts beneficial effects on reperfusion injury but not ischemic injury, laying a basis for precise therapy for patients with myocardial infarction.
Journal Article
Seed Priming with Melatonin Improves the Seed Germination of Waxy Maize under Chilling Stress via Promoting the Antioxidant System and Starch Metabolism
2019
Chilling stress is one of the major abiotic stresses affecting waxy maize plant growth. Melatonin (MT) is able to improve tolerance to abiotic stress in plants. To investigate the effects of seed priming with MT on tolerance to chilling stress in waxy maize, the seed germination characteristics and physiological parameters were tested with varied MT concentrations (0, 50, 100 µM) and treatment times (12, 24 h) at ambient (25 °C) and chilling (13 °C) temperature. MT primed seeds significantly enhanced the germination potential (by 20.29% and 50.71%, respectively), germination rate (by 20.88% and 33.72%), and increased the radicle length (by 90.73% and 217.14%), hypocotyl length (by 60.28% and 136.14%), root length (by 74.59% and 108.70%), and seed vigor index (46.13%, 63.81%), compared with the non-priming seeds under chilling stress. No significant difference was found in priming time between primed and non-primed seeds. In addition, lower H
2
O
2
and malondialdehyde concentrations, increased antioxidant enzyme activities (superoxide dismutase, peroxidase, catalase and ascorbateperoxidase), and promoted starch metabolism were found in primed seeds compared to non-primed ones. It was suggested that seed priming with MT improved waxy maize seed germination under chilling stress through improving antioxidant system and starch metabolism, which protected from oxidative damage.
Journal Article
VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis
Our preliminary work has revealed that vitamin D receptor (VDR) activation is protective against cisplatin induced acute kidney injury (AKI). Ferroptosis was recently reported to be involved in AKI. Here in this study, we investigated the internal relation between ferroptosis and the protective effect of VDR in cisplatin induced AKI. By using ferroptosis inhibitor ferrostatin-1 and measurement of ferroptotic cell death phenotype in both in vivo and in vitro cisplatin induced AKI model, we observed the decreased blood urea nitrogen, creatinine, and tissue injury by ferrostatin-1, hence validated the essential involvement of ferroptosis in cisplatin induced AKI. VDR agonist paricalcitol could both functionally and histologically attenuate cisplatin induced AKI by decreasing lipid peroxidation (featured phenotype of ferroptosis), biomarker 4-hydroxynonenal (4HNE), and malondialdehyde (MDA), while reversing glutathione peroxidase 4 (GPX4, key regulator of ferroptosis) downregulation. VDR knockout mouse exhibited much more ferroptotic cell death and worsen kidney injury than wild type mice. And VDR deficiency remarkably decreased the expression of GPX4 under cisplatin stress in both in vivo and in vitro, further luciferase reporter gene assay showed that GPX4 were target gene of transcription factor VDR. In addition, in vitro study showed that GPX4 inhibition by siRNA largely abolished the protective effect of paricalcitol against cisplatin induced tubular cell injury. Besides, pretreatment of paricalcitol could also alleviated Erastin (an inducer of ferroptosis) induced cell death in HK-2 cell. These data suggested that ferroptosis plays an important role in cisplatin induced AKI. VDR activation can protect against cisplatin induced renal injury by inhibiting ferroptosis partly via trans-regulation of GPX4.
Journal Article
Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice
by
Mostofa, Mohammad Golam
,
Watanabe, Ayaka
,
Tran, Lam-Son Phan
in
631/449/1736
,
631/449/2661/2665
,
Antioxidants
2015
We investigated the physiological and biochemical mechanisms by which H
2
S mitigates the cadmium stress in rice. Results revealed that cadmium exposure resulted in growth inhibition and biomass reduction, which is correlated with the increased uptake of cadmium and depletion of the photosynthetic pigments, leaf water contents, essential minerals, water-soluble proteins and enzymatic and non-enzymatic antioxidants. Excessive cadmium also potentiated its toxicity by inducing oxidative stress, as evidenced by increased levels of superoxide, hydrogen peroxide, methylglyoxal and malondialdehyde. However, elevating endogenous H
2
S level improved physiological and biochemical attributes, which was clearly observed in the growth and phenotypes of H
2
S-treated rice plants under cadmium stress. H
2
S reduced cadmium-induced oxidative stress, particularly by enhancing redox status and the activities of reactive oxygen species and methylglyoxal detoxifying enzymes. Notably, H
2
S maintained cadmium and mineral homeostases in roots and leaves of cadmium-stressed plants. By contrast, adding H
2
S-scavenger hypotaurine abolished the beneficial effect of H
2
S, further strengthening the clear role of H
2
S in alleviating cadmium toxicity in rice. Collectively, our findings provide an insight into H
2
S-induced protective mechanisms of rice exposed to cadmium stress, thus proposing H
2
S as a potential candidate for managing toxicity of cadmium and perhaps other heavy metals, in rice and other crops.
Journal Article
Effect of Low Temperature on Chlorophyll Biosynthesis and Chloroplast Biogenesis of Rice Seedlings during Greening
by
Zhao, Yuqing
,
Zhang, Zhongwei
,
Yuan, Shu
in
Aminolevulinic Acid - metabolism
,
Cell Death - physiology
,
Chlorophyll - biosynthesis
2020
Rice (Oryza sativa L.) frequently suffers in late spring from severe damage due to cold spells, which causes the block of chlorophyll biosynthesis during early rice seedling greening. However, the inhibitory mechanism by which this occurs is still unclear. To explore the responsive mechanism of rice seedlings to low temperatures during greening, the effects of chilling stress on chlorophyll biosynthesis and plastid development were studied in rice seedlings. Chlorophyll biosynthesis was obviously inhibited and chlorophyll accumulation declined under low temperatures during greening. The decrease in chlorophyll synthesis was due to the inhibited synthesis of δ-aminolevulinic acid (ALA) and the suppression of conversion from protochlorophyllide (Pchlide) into chlorophylls (Chls). Meanwhile, the activities of glutamate-1-semialdehyde transaminase (GSA-AT), Mg-chelatase, and protochlorophyllide oxidoreductase (POR) were downregulated under low temperatures. Further investigations showed that chloroplasts at 18 °C had loose granum lamellae, while the thylakoid and lamellar structures of grana could hardly develop at 12 °C after 48 h of greening. Additionally, photosystem II (PSII) and photosystem I (PSI) proteins obviously declined in the stressed seedlings, to the point that the PSII and PSI proteins could hardly be detected after 48 h of greening at 12 °C. Furthermore, the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) and cell death were all induced by low temperature. Chilling stress had no effect on the development of epidermis cells, but the stomata were smaller under chilling stress than those at 28 °C. Taken together, our study promotes more comprehensive understanding in that chilling could inhibit chlorophyll biosynthesis and cause oxidative damages during greening.
Journal Article
Exogenous melatonin accelerates seed germination in cotton (Gossypium hirsutum L.)
by
Li, Dongxiao
,
Zhang, Yongjiang
,
Zhang, Ke
in
Abscisic acid
,
Antioxidants
,
Antioxidants (Nutrients)
2019
Seed germination is considered the beginning of the spermatophyte lifecycle, and it is a crucial stage in determining subsequent plant growth and development. Although many previous studies have found that melatonin can promote seed germination, the role of melatonin in cotton germination remains unexamined. The main objective of this study is the characterization of potential promotional effects of melatonin (at doses of 0, 10, 20, 50, 100 and 200 μM) on cotton seed germination. This experiment demonstrated that low concentrations of melatonin can promote germination, while high concentrations failed to promote germination and even inhibited germination. Together, these results indicate that a 20 μM melatonin treatment optimally promotes cotton seed germination. Compared with the control, germination potential (GP), germination rate (GR), and final fresh weight (FW) increased by 16.67%, 12.30%, and 4.81%, respectively. Although low concentrations of melatonin showed some improvement in vigor index (VI), germination index (GI), and mean germination time (MGT), these effects were not statistically significant. Antioxidant enzyme activity during seed germination was most prominent under the 20 μM melatonin treatment. Superoxide dismutase (SOD) and peroxidase (POD) activities were significantly increased by 10.37-59.73% and 17.79-47.68%, respectively, compared to the melatonin-free control. Malondialdehyde (MDA) content was reduced by 16.73-40.33%. Two important plant hormones in seed germination, abscisic acid (ABA) and gibberellins (GAs), were also studied. As melatonin concentration increased, ABA content in seeds decreased first and then increased, and GA3 content showed a diametrically opposite trend, in which the 20 μM melatonin treatment was optimal. The 20 μM melatonin treatment reduced ABA content in seeds by 42.13-51.68%, while the 20 μM melatonin treatment increased GA3 content in seeds to about 1.7-2.5 times that of seeds germinated without melatonin. This study provides new evidence suggesting that low concentrations of melatonin can promote cotton seed germination by increasing the activity of antioxidant enzymes, thereby reducing the accumulation of MDA and regulating plant hormones. This has clear applications for improving the germination rate of cotton seeds using melatonin.
Journal Article
Senescent cells expose and secrete an oxidized form of membrane-bound vimentin as revealed by a natural polyreactive antibody
by
Frescas, David
,
Strom, Evguenia
,
Kurnasov, Oleg V.
in
Animals
,
Antibodies - metabolism
,
Antigens
2017
Studying the phenomenon of cellular senescence has been hindered by the lack of senescence-specific markers. As such, detection of proteins informally associated with senescence accompanies the use of senescence-associated β-galactosidase as a collection of semiselective markers to monitor the presence of senescent cells. To identify novel biomarkers of senescence, we immunized BALB/c mice with senescent mouse lung fibroblasts and screened for antibodies that recognized senescence-associated cell-surface antigens by FACS analysis and a newly developed cell-based ELISA. The majority of antibodies that we isolated, cloned, and sequenced belonged to the IgM isotype of the innate immune system. In-depth characterization of one of these monoclonal, polyreactive natural antibodies, the IgM clone 9H4, revealed its ability to recognize the intermediate filament vimentin. By using 9H4, we observed that senescent primary human fibroblasts express vimentin on their cell surface, and MS analysis revealed a posttranslational modification on cysteine 328 (C328) by the oxidative adduct malondialdehyde (MDA). Moreover, elevated levels of secreted MDA-modified vimentin were detected in the plasma of aged senescence-accelerated mouse prone 8 mice, which are known to have deregulated reactive oxygen species metabolism and accelerated aging. Based on these findings, we hypothesize that humoral innate immunity may recognize senescent cells by the presence of membrane-bound MDA-vimentin, presumably as part of a senescence eradication mechanism that may become impaired with age and result in senescent cell accumulation.
Journal Article