Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
37 result(s) for "Mansonella perstans"
Sort by:
A cross-sectional study of the filarial and Leishmania co-endemicity in two ecologically distinct settings in Mali
Background Filariasis and leishmaniasis are two neglected tropical diseases in Mali. Due to distribution and associated clinical features, both diseases are of concern to public health. The goal of this study was to determine the prevalence of co-infection with filarial ( Wuchereria bancrofti and Mansonella perstans ) and Leishmania major parasites in two ecologically distinct areas of Mali, the Kolokani district (villages of Tieneguebougou and Bougoudiana) in North Sudan Savanna area, and the district of Kolondieba (village of Boundioba) in the South Sudan Savanna area. Methods The prevalence of co-infection (filarial and Leishmania ) was measured based on (i) Mansonella perstans microfilaremia count and/or filariasis immunochromatographic test (ICT) for Wuchereria bancrofti- specific circulating antigen, and (ii) the prevalence of delayed type hypersensitivity (DTH) responses to Leishmania measured by leishmanin skin test (LST). Results In this study, a total of 930 volunteers between the age of 18 and 65 were included from the two endemic areas of Kolokani and Kolondieba. In general, in both areas, filarial infection was more prevalent than Leishmania infection with an overall prevalence of 15.27% (142/930) including 8.7% (81/930) for Mansonella perstans and 8% (74/930) for Wuchereria bancrofti- specific circulating antigen. The prevalence of Leishmania major infection was 7.7% (72/930) and was significantly higher in Tieneguebougou and Bougoudiana (15.05%; 64/425) than in Boundioba (2.04%; 8/505) ( χ 2  = 58.66, P  < 0.0001). Among the filarial infected population, nearly 10% (14/142) were also positive for Leishmania with an overall prevalence of co-infection of 1.50% (14/930) varying from 2.82% (12/425) in Tieneguebougou and Bougoudiana to 0.39% (2/505) in Boundioba ( P  = 0.0048). Conclusion This study established the existence of co-endemicity of filarial and Leishmania infections in specific regions of Mali. Since both filarial and Leishmania infections are vector-borne with mosquitoes and sand flies as respective vectors, an integrated vector control approach should be considered in co-endemic areas. The effect of potential interaction between filarial and Leishmania parasites on the disease outcomes may be further studied.
Wolbachia bacteria in Mansonella perstans isolates from patients infected in different geographical areas: a pilot study from the ESCMID Study Group for Clinical Parasitology
Background Mansonella perstans is a vector-borne filarial parasite widely endemic in sub-Saharan Africa, with sporadic cases in Latin America. Infection is often overlooked; treatment is not standardized, and effectiveness of common regimes is difficult to ascertain. Anti- Wolbachia macrofilaricidal treatment with doxycycline has been applied, but there are scant and contrasting reports about the presence of Wolbachia in M. perstans isolates from different geographical locations. Taking advantage of a network of European centres expert in traveller and migrant health, we aimed to expand the knowledge concerning the distribution of Wolbachia in M. perstans to contribute to the design of optimal treatment approaches. Methods We analysed 19 samples of concentrated microfilariae or whole blood from M. perstans -infected patients who reported having resided or travelled in one or more of 10 West African countries. Wolbachia was detected by PCR targeting 16S and ftsZ genes and phylogenetic analysis of M. perstans was performed based on COX1 gene sequencing. Results Wolbachia was identified in 14/19 (74%) samples. With the possible inaccuracy deriving from potential origin of infection being identified retrospectively from routine clinical visit’s documents, this study identified Wolbachia in M. perstans from Burkina Faso, Equatorial Guinea, Republic of Guinea and Senegal for the first time to our knowledge. Furthermore, Wolbachia might also be present in M. perstans from Democratic Republic of the Congo, Mali, Niger and Nigeria. Conclusions The retrieval of Wolbachia -positive and Wolbachia -negative M. perstans samples can either be explained by technical limitations or reflect the real existence of Wolbachia -positive and Wolbachia -negative M. perstans populations. However, this latter hypothesis was not supported by our phylogenetic analysis. Our results suggest that doxycycline could be used for the treatment of M. perstans infection upfront or, if possible, after ascertaining the presence of Wolbachia by PCR performed on concentrated microfilariae using two targets to avoid false-negative results. Graphical Abstract
Nodding syndrome, a case-control study in Mahenge, Tanzania: Onchocerca volvulus and not Mansonella perstans as a risk factor
Nodding syndrome (NS) has been consistently associated with onchocerciasis. Nevertheless, a positive association between NS and a Mansonella perstans infection was found in South Sudan. We aimed to determine whether the latter parasite could be a risk factor for NS in Mahenge. Cases of epilepsy were identified in villages affected by NS in Mahenge, Tanzania, and matched with controls without epilepsy of the same sex, age and village. We examined blood films of cases and controls to identify M. perstans infections. The participants were also asked for sociodemographic and epilepsy information, examined for palpable onchocercal nodules and onchocerciasis-related skin lesions and tested for anti-Onchocerca volvulus antibodies (Ov16 IgG4) by ELISA. Clinical characteristics of cases and controls, O. volvulus exposure status and relevant sociodemographic variables were assessed by a conditional logistic regression model for NS and epilepsy status matched for age, sex and village. A total of 113 epilepsy cases and 132 controls were enrolled, of which, respectively, 56 (49.6%) and 64 (48.5%) were men. The median age in cases and controls was 28.0 (IQR: 22.0-35.0) and 27.0 (IQR: 21.0-33.3) years. Of the persons with epilepsy, 43 (38.1%) met the probable NS criteria and 106 (93.8%) had onchocerciasis-associated epilepsy (OAE). M. perstans infection was absent in all participants, while Ov16 seroprevalence was positively associated with probable NS (odds ratio (OR): 5.05, 95%CI: 1.79-14.27) and overall epilepsy (OR: 2.03, 95%CI: 1-07-3.86). Moreover, onchocerciasis-related skin manifestations were only found in the cases (n = 7, p = 0.0040), including persons with probable NS (n = 4, p = 0.0033). Residing longer in the village and having a family history of seizures were positively correlated with Ov16 status and made persons at higher odds for epilepsy, including probable NS. In contrast to O. volvulus, M. perstans is most likely not endemic to Mahenge and, therefore, cannot be a co-factor for NS in the area. Hence, this filaria is unlikely to be the primary and sole causal factor in the development of NS. The main risk factor for NS remains onchocerciasis.
Whole genome analysis of two sympatric human Mansonella: Mansonella perstans and Mansonella sp “DEUX”
species are filarial parasites that infect humans worldwide. Although these infections are common, knowledge of the pathology and diversity of the causative species is limited. Furthermore, the lack of sequencing data for species, shows that their research is neglected. Apart from Mansonella perstans, a potential new species called sp \"DEUX\" has been identified in Gabon, which is prevalent at high frequencies. We aimed to further determine if sp \"DEUX\" is a genotype of M. , or if these are two sympatric species. We screened individuals in the area of Fougamou, Gabon for Mansonella mono-infections and generated de novo assemblies from the respective samples. For evolutionary analysis, a phylogenetic tree was reconstructed, and the differences and divergence times are presented. In addition, mitogenomes were generated and phylogenies based on 12S rDNA and cox1 were created. We successfully generated whole genomes for M. perstans and sp \"DEUX\". Phylogenetic analysis based on annotated protein sequences, support the hypothesis of two distinct species. The inferred evolutionary analysis suggested, that M. perstans and sp \"DEUX\" separated around 778,000 years ago. Analysis based on mitochondrial marker genes support our hypothesis of two sympatric human Mansonella species. The results presented indicate that sp \"DEUX\" is a new species. These findings reflect the neglect of this research topic. And the availability of whole genome data will allow further investigations of these species.
Loa loa and Mansonella perstans microfilaremia in the department of Lékoumou, Republic of Congo
Background Loiasis is endemic in the northern and western part of the Republic of Congo. Between 2004 and 2010, surveys were conducted, using the RAPLOA method, in all departments of the Republic of Congo to assess the distribution of loiasis. Prior to 2004, only two parasitological surveys on loiasis had been conducted in Congo and mainly in the Department of Lékoumou, in the southwestern of the country. In 2019, we conducted a parasitological survey in this same department, more than 30 years after the first surveys. Methods The study was conducted in 21 villages. Loa loa and Mansonella perstans microfilaremia levels were quantified using 50 µl calibrated blood smears. Results A total of 2444 individuals were examined. The median age of the screened individuals was 43 (interquartile range: 30–57, range: 18–91) years old. The overall prevalences of L. loa and M. perstans microfilaremia were 20.0% [95% confidence intervals (CI) 18.0–21.6%] and 1.0% (95% CI 0.6–1.4%) respectively. The proportion of individuals with a microfilarial density of L. loa > 8000 mf/ml and > 30,000 mf/ml were 5.1% (95% CI 4.3–6.1%) and 1.1% (95% CI 0.8–1.7%), respectively. The overall community microfilarial load was 3.4 mf/ml. Conclusions Prevalences and intensities of L. loa infection remained generally stable between the late 1980s and 2019 in the Lékoumou Department. In contrast, parasitological indicators for M. perstans have declined sharply in the intervening years for an unknown reason. Graphical Abstract
Diagnostic performance of capillary and venous blood samples in the detection of Loa loa and Mansonella perstans microfilaraemia using light microscopy
Background Loa loa and Mansonella perstans-the causative agents of loiasis and mansonellosis-are vector-borne filarial parasites co-endemic in sub-Saharan Africa. Diagnosis of both infections is usually established by microscopic analysis of blood samples. It was recently established that the odds for detecting Plasmodium spp. is higher in capillary (CAP) blood than in venous (VEN) blood. In analogy to this finding this analysis evaluates potential differences in microfilaraemia of L. loa and M. perstans in samples of CAP and VEN blood. Methods Recruitment took place between 2015 and 2019 at the CERMEL in Lambaréné, Gabon and its surrounding villages. Persons of all ages presenting to diagnostic services of the research center around noon were invited to participate in the study. A thick smear of each 10 microliters of CAP and VEN blood was prepared and analysed by a minimum of two independent microscopists. Differences of log2-transformed CAP and VEN microfilaraemia were computed and expressed as percentages. Furthermore, odds ratios for paired data were computed to quantify the odds to detect microfilariae in CAP blood versus in VEN blood. Results A total of 713 participants were recruited among whom 52% were below 30 years of age, 27% between 30-59 years of age and 21% above 60 years of age. Male-female ratio was 0.84. Among 152 participants with microscopically-confirmed L. loa infection median (IQR) microfilaraemia was 3,650 (275-11,100) per milliliter blood in CAP blood and 2,775 (200-8,875) in VEN blood (p<0.0001), while among 102 participants with M. perstans this was 100 (0-200) and 100 (0-200), respectively (p = 0.44). Differences in linear models amount up to an average of +34.5% (95% CI: +11.0 to +63.0) higher L. loa microfilaria quantity in CAP blood versus VEN blood and for M. perstans it was on average higher by +24.8% (95% CI: +0.0 to +60.5). Concordantly, the odds for detection of microfilaraemia in CAP samples versus VEN samples was 1.24 (95% CI: 0.65-2.34) and 1.65 (95% CI: 1.0-2.68) for infections with L. loa and M. perstans, respectively. Conclusion This analysis indicates that average levels of microfilaraemia of L. loa are higher in CAP blood samples than in VEN blood samples. This might have implications for treatment algorithms of onchocerciasis and loiasis, in which exact quantification of L. loa microfilaraemia is of importance. Furthermore, the odds for detection of M. perstans microfilariae was higher in CAP than in VEN blood which may pre-dispose CAP blood for detection of M. perstans infection in large epidemiological studies when sampling of large blood quantities is not feasible. No solid evidence for a higher odds of L. loa microfilariae detection in CAP blood was revealed, which might be explained by generally high levels of L. loa microfilaraemia in CAP and VEN blood above the limit of detection of 100 microfilariae/ml. Yet, it cannot be excluded that the study was underpowered to detect a moderate difference.
A large case series of travel-related Mansonella perstans (vector-borne filarial nematode): a TropNet study in Europe
Abstract Background Infection with Mansonella perstans is a neglected filariasis, widely distributed in sub-Saharan Africa, characterized by an elusive clinical picture; treatment for mansonellosis is not standardized. This retrospective study aimed to describe the clinical features, treatment schemes and evolution, of a large cohort of imported cases of M. perstans infection seen in four European centres for tropical diseases. Methods Mansonella perstans infections, diagnosed by identification of blood microfilariae in migrants, expatriates and travellers, collected between 1994 and 2018, were retrospectively analysed. Data concerning demographics, clinical history and laboratory examinations at diagnosis and at follow-up time points were retrieved. Results A total of 392 patients were included in the study. Of the 281 patients for whom information on symptoms could be retrieved, 150 (53.4%) reported symptoms, abdominal pain and itching being the most frequent. Positive serology and eosinophilia were present in 84.4% and 66.1%, respectively, of those patients for whom these data were available. Concomitant parasitic infections were reported in 23.5% of patients. Treatment, administered to 325 patients (82.9%), was extremely heterogeneous between and within centres; the most commonly used regimen was mebendazole 100 mg twice a day for 1 month. A total of 256 (65.3%) patients attended a first follow-up, median 3 months (interquartile range 2–12) after the first visit; 83.1% of patients having received treatment based on mebendazole and/or doxycycline, targeting Wolbachia, became amicrofilaremic, 41.1–78.4% of whom within 12 months from single treatment. Conclusions Lack of specific symptoms, together with the inconstant positivity of parasitological and antibody-based assays in the infected population, makes the clinical suspicion and screening for mansonellosis particularly difficult. Prospective studies evaluating prevalence of infection in migrants from endemic areas, infection-specific morbidity, presence of Wolbachia endosymbionts in M. perstans populations from different geographical areas and efficacy of treatment regimens are absolutely needed to optimize the clinical management of infection.
Inaccurate recording of Mansonella perstans in free-ranging primates outside its endemic area in Brazil?
In the study undertaken by Souza et al. [Primates 64(1):153–159, 2022; https://doi.org/10.1007/s10329-022-01038-5], published in the most recent volume of this journal, the blood samples of two Alouatta guariba clamitans (Primates, Atelidae) from two municipalities in the state of Rio Grande do Sul, southern Brazil were reported to be positive for Mansonella perstans. This is the first reported finding of M. perstans in A. guariba clamitans, as well as the first time that M. perstans has been recorded in Brazil outside the Amazon region. We would like to express our concern about this finding, specifically with respect to the geographical distribution of M. perstans in Brazil, as, up until this study, this filaria had only been found in the upper Rio Negro region in São Gabriel da Cachoeira, Amazonas, Brazil. Moreover, species identification was performed using partial sequences of three gene fragments, namely internal transcribed spacer 2, 12S, and 18S, yet neither the phylogenetic trees nor the BLAST alignments of these sequences provided supporting evidence that they belong to M. perstans.
The design and development of a study protocol to investigate Onchocerca volvulus, Loa loa and Mansonella perstans-mediated modulation of the metabolic and immunological profile in lean and obese individuals in Cameroon
Life-style metabolic diseases are steadily rising, not only in developed countries, but also in low- and middle-income countries, presenting a global health problem. Metabolic disorders like type 2 diabetes and cardiovascular diseases are among the ten leading causes of death defined by the WHO in 2019. Results from animal and observational human studies suggest a connection between the decline in human helminth infections and rise of life-style-associated metabolic diseases in developing regions. This trial was designed to investigate filarial infections and their impact on metabolic diseases in Cameroon. We hypothesize that the induction of regulatory immune responses during filarial infection reduces obesity-induced low-grade inflammatory immune responses and thereby improves metabolic parameters, whereas anthelmintic treatment abolishes this protective effect. Participants infected with Mansonella perstans, Onchocerca volvulus and/or Loa loa being lean (BMI <25), overweight (BMI >25 and <30) or clinically obese (BMI ≥30) from Littoral regions of Cameroon will be evaluated for their parasitological, immunological, metabolic and biochemical profile before and after treatment of their parasitic infections. Anthropomorphic measurements and a detailed questionnaire will complement our analysis. The investigation will assess blood immune cell populations, serum adipokines and cytokines that could be influenced by the parasite infection and/or metabolic diseases. Further, parameters like blood glucose, homeostatic model assessment of insulin resistance (HOMA-IR), circulating lipids and circulating makers of liver function will be monitored. Parameters will be assessed before treatment, 12 and 18 months after treatment. The focus of this study is to obtain a comprehensive metabolic profile of the participants in rural areas of Cameroon and to investigate the relationship between filarial immunomodulation and metabolic diseases. This study will elucidate the effect of anti-filarial treatment on the metabolic and immunological parameters that partake in the development of insulin resistance, narrowing in on a potential protective effect of filarial infections on metabolic diseases. doi.org/10.1186/ISRCTN43845142, ISRCTN43845142 February 2020 Trial title Effects of filarial parasite infection on type 2 diabetes Issue date: 27.10.22, V.1.
Integrated xenosurveillance of Loa loa, Wuchereria bancrofti, Mansonella perstans and Plasmodium falciparum using mosquito carcasses and faeces: A pilot study in Cameroon
Community presence of loiasis must be determined before mass drug administration programmes for lymphatic filariasis and onchocerciasis can be implemented. However, taking human blood samples for loiasis surveillance is invasive and operationally challenging. A xenosurveillance approach based on the molecular screening of mosquitoes and their excreta/feces (E/F) for Loa loa DNA may provide a non-invasive method for detecting the community presence of loiasis. We collected 770 wild mosquitoes during a pilot study in a known loiasis transmission area in Mbalmayo, Cameroon. Of these, 376 were preserved immediately while 394 were kept in pools to collect 36-hour E/F samples before processing. Carcasses and E/F were screened for L. loa DNA. To demonstrate this method's potential for integrated disease surveillance, the samples were further tested for Wuchereria bancrofti, Mansonella perstans, and Plasmodium falciparum. Despite limited sample numbers, L. loa DNA was detected in eight immediately-stored mosquitoes (2.13%; 95% CI 1.08 to 4.14), one carcass stored after providing E/F (0.25%; 95% CI 0.04 to 1.42), and three E/F samples (estimated prevalence 0.77%; 95% CI 0.15 to 2.23%). M. perstans and P. falciparum DNA were also detected in carcasses and E/F samples, while W. bancrofti DNA was detected in E/F. None of the carcasses positive for filarial worm DNA came from pools that provided a positive E/F sample, supporting the theory that, in incompetent vectors, ingested parasites undergo a rapid, complete expulsion in E/F. Mosquito xenosurveillance may provide a useful tool for the surveillance of loiasis alongside other parasitic diseases.