Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
680 result(s) for "Membrane Potentials - radiation effects"
Sort by:
Mitochondrial Metabolism in X-Irradiated Cells Undergoing Irreversible Cell-Cycle Arrest
Irreversible cell-cycle-arrested cells not undergoing cell divisions have been thought to be metabolically less active because of the unnecessary consumption of energy for cell division. On the other hand, they might be actively involved in the tissue microenvironment through an inflammatory response. In this study, we examined the mitochondria-dependent metabolism in human cells irreversibly arrested in response to ionizing radiation to confirm this possibility. Human primary WI-38 fibroblast cells and the BJ-5ta fibroblast-like cell line were exposed to 20 Gy X-rays and cultured for up to 9 days after irradiation. The mitochondrial morphology and membrane potential were evaluated in the cells using the mitochondrial-specific fluorescent reagents MitoTracker Green (MTG) and 5,5′,6,6′-tetraethyl-benzimidazolylcarbocyanine iodide (JC-1), respectively. The ratio of the mean MTG-stained total mitochondrial area per unit cell area decreased for up to 9 days after X-irradiation. The fraction of the high mitochondrial membrane potential area visualized by JC-1 staining reached its minimum 2 days after irradiation and then increased (particularly, WI-38 cells increased 1.8-fold the value of the control). Their chronological changes indicate that the mitochondrial volume in the irreversible cell-cycle-arrested cells showed significant increase concurrently with cellular volume expansion, indicating that the mitochondria-dependent energy metabolism was still active. These results indicate that the energy metabolism in X-ray-induced senescent-like cells is active compared to nonirradiated normal cells, even though they do not undergo cell divisions.
RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area
Agonists of GABA B receptors exert a bi-directional effect on the activity of dopamine (DA) neurons of the ventral tegmental area, which can be explained by the fact that coupling between GABA B receptors and G protein-gated inwardly rectifying potassium (GIRK) channels is significantly weaker in DA neurons than in GABA neurons. Thus, low concentrations of agonists preferentially inhibit GABA neurons and thereby disinhibit DA neurons. This disinhibition might confer reinforcing properties on addictive GABA B receptor agonists such as γ-hydroxybutyrate (GHB) and its derivatives. Here we show that, in DA neurons of mice, the low coupling efficiency reflects the selective expression of heteromeric GIRK2/3 channels and is dynamically modulated by a member of the regulator of G protein signaling (RGS) protein family. Moreover, repetitive exposure to GHB increases the GABA B receptor-GIRK channel coupling efficiency through downregulation of RGS2. Finally, oral self-administration of GHB at a concentration that is normally rewarding becomes aversive after chronic exposure. On the basis of these results, we propose a mechanism that might underlie tolerance to GHB.
Modeling Electroporation in a Single Cell
Electroporation uses electric pulses to promote delivery of DNA and drugs into cells. This study presents a model of electroporation in a spherical cell exposed to an electric field. The model determines transmembrane potential, number of pores, and distribution of pore radii as functions of time and position on the cell surface. For a 1-ms, 40 kV/m pulse, electroporation consists of three stages: charging of the cell membrane (0–0.51 μs), creation of pores (0.51–1.43 μs), and evolution of pore radii (1.43 μs to 1 ms). This pulse creates ∼341,000 pores, of which 97.8% are small (≈1 nm radius) and 2.2% are large. The average radius of large pores is 22.8 ± 18.7 nm, although some pores grow to 419 nm. The highest pore density occurs on the depolarized and hyperpolarized poles but the largest pores are on the border of the electroporated regions of the cell. Despite their much smaller number, large pores comprise 95.3% of the total pore area and contribute 66% to the increased cell conductance. For stronger pulses, pore area and cell conductance increase, but these increases are due to the creation of small pores; the number and size of large pores do not increase.
Optogenetic control of phosphoinositide metabolism
Phosphoinositides (PIs) are lipid components of cell membranes that regulate a wide variety of cellular functions. Here we exploited the blue light-induced dimerization between two plant proteins, cryptochrome 2 (CRY2) and the transcription factor CIBN, to control plasma membrane PI levels rapidly, locally, and reversibly. The inositol 5-phosphatase domain of OCRL (5-ptase OCRL), which acts on PI(4,5)P ₂ and PI(3,4,5)P ₃, was fused to the photolyase homology region domain of CRY2, and the CRY2-binding domain, CIBN, was fused to plasma membrane-targeting motifs. Blue-light illumination (458–488 nm) of mammalian cells expressing these constructs resulted in nearly instantaneous recruitment of 5-ptase OCRL to the plasma membrane, where it caused rapid (within seconds) and reversible (within minutes) dephosphorylation of its targets as revealed by diverse cellular assays: dissociation of PI(4,5)P ₂ and PI(3,4,5)P ₃ biosensors, disappearance of endocytic clathrin-coated pits, nearly complete inhibition of KCNQ2/3 channel currents, and loss of membrane ruffling. Focal illumination resulted in local and transient 5-ptase OCRL recruitment and PI(4,5)P ₂ dephosphorylation, causing not only local collapse and retraction of the cell edge or process but also compensatory accumulation of the PI(4,5)P ₂ biosensor and membrane ruffling at the opposite side of the cells. Using the same approach for the recruitment of PI3K, local PI(3,4,5)P ₃ synthesis and membrane ruffling could be induced, with corresponding loss of ruffling distally to the illuminated region. This technique provides a powerful tool for dissecting with high spatial–temporal kinetics the cellular functions of various PIs and reversibly controlling the functions of downstream effectors of these signaling lipids.
Imaging the dynamics of individual electropores
Electroporation is a widely used technique to permeabilize cell membranes. Despite its prevalence, our understanding of the mechanism of voltage-mediated pore formation is incomplete; methods capable of visualizing the time-dependent behavior of individual electropores would help improve our understanding of this process. Here, using optical single-channel recording, we track multiple isolated electropores in real time in planar droplet interface bilayers. We observe individual, mobile defects that fluctuate in size, exhibiting a range of dynamic behaviors. We observe fast (25 s−1) and slow (2 s−1) components in the gating of small electropores, with no apparent dependence on the applied potential. Furthermore, we find that electropores form preferentially in the liquid disordered phase. Our observations are in general supportive of the hydrophilic toroidal pore model of electroporation, but also reveal additional complexity in the interactions, dynamics, and energetics of electropores.
Light-evoked hyperpolarization and silencing of neurons by conjugated polymers
The ability to control and modulate the action potential firing in neurons represents a powerful tool for neuroscience research and clinical applications. While neuronal excitation has been achieved with many tools, including electrical and optical stimulation, hyperpolarization and neuronal inhibition are typically obtained through patch-clamp or optogenetic manipulations. Here we report the use of conjugated polymer films interfaced with neurons for inducing a light-mediated inhibition of their electrical activity. We show that prolonged illumination of the interface triggers a sustained hyperpolarization of the neuronal membrane that significantly reduces both spontaneous and evoked action potential firing. We demonstrate that the polymeric interface can be activated by either visible or infrared light and is capable of modulating neuronal activity in brain slices and explanted retinas. These findings prove the ability of conjugated polymers to tune neuronal firing and suggest their potential application for the in-vivo modulation of neuronal activity.
Glutamate exocytosis from astrocytes controls synaptic strength
The release of transmitters from glia influences synaptic functions. The modalities and physiological functions of glial release are poorly understood. Here we show that glutamate exocytosis from astrocytes of the rat hippocampal dentate molecular layer enhances synaptic strength at excitatory synapses between perforant path afferents and granule cells. The effect is mediated by ifenprodil-sensitive NMDA ionotropic glutamate receptors and involves an increase of transmitter release at the synapse. Correspondingly, we identify NMDA receptor 2B subunits on the extrasynaptic portion of excitatory nerve terminals. The receptor distribution is spatially related to glutamate-containing synaptic-like microvesicles in the apposed astrocytic processes. This glial regulatory pathway is endogenously activated by neuronal activity–dependent stimulation of purinergic P2Y1 receptors on the astrocytes. Thus, we provide the first combined functional and ultrastructural evidence for a physiological control of synaptic activity via exocytosis of glutamate from astrocytes.
Photothermal cellular stimulation in functional bio-polymer interfaces
Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications, bearing a huge potential, from basic researches to clinical applications. In particular, light sensitive conjugated polymers can be exploited as a new approach for optical modulation of cellular activity. In this work we focus on light-induced changes in the membrane potential of Human Embryonic Kidney (HEK-293) cells grown on top of a poly(3-hexylthiophene) (P3HT) thin film. On top of a capacitive charging of the polymer interface, we identify and fully characterize two concomitant mechanisms, leading to membrane depolarization and hyperpolarisation, both mediated by a thermal effect. Our results can be usefully exploited in the creation of a new platform for light-controlled cell manipulation, with possible applications in neuroscience and medicine.
Direct measurement of somatic voltage clamp errors in central neurons
Although the technique of somatic voltage clamp is widely used, computational models have predicted that this controls voltage in the dendritic tree poorly. Williams and Mitchell directly quantify this error using simultaneous recordings from the soma and apical dendrites of rat neocortical pyramidal neurons. Spruston and Johnston also highlight this in an associated news and views. The somatic voltage clamp technique has revolutionized understanding of synaptic physiology and the excitability of neurons. Although computer simulations have indicated that the somatic voltage clamp poorly controls voltage in the dendritic tree of neurons, where the majority of synaptic contacts are made, there has not been an experimental description of the performance of the somatic voltage clamp. Here, we directly quantify errors in the measurement of dendritic synaptic input by the somatic voltage clamp using simultaneous whole-cell recordings from the soma and apical dendrite of rat neocortical pyramidal neurons. The somatic voltage clamp did not control voltage at sites other than the soma and distorted measurement of the amplitude, kinetics, slope conductance and reversal potential of synaptic inputs in a dendritic distance–dependent manner. These errors question the use of the somatic voltage clamp as a quantitative tool in dendritic neurons.
A thermosensory pathway that controls body temperature
Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions that are governed by the nervous system. Here we describe a somatosensory pathway that essentially constitutes the afferent arm of the thermoregulatory reflex that is triggered by cutaneous sensation of environmental temperature changes. Using in vivo electrophysiological and anatomical approaches in the rat, we found that lateral parabrachial neurons are pivotal in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, the preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this 'thermoregulatory afferent' pathway exists in parallel with the spinothalamocortical somatosensory pathway that mediates temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis—two mechanisms that are fundamental to the nervous system and to our survival.