Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
743
result(s) for
"Microarray Analysis - instrumentation"
Sort by:
Stochastic deposition of amino acids into microcavities via microparticles
by
Shankara, Girish Karadka
,
Mattes, Daniela
,
Popov, Roman
in
639/638/898
,
639/925/929
,
Amino acids
2019
All known methods for solid-phase synthesis of molecular arrays exploit positioning techniques to deposit monomers on a substrate preferably high densely. In this paper, stochastic patterning of molecule spots (250 000 spots monomers/cm
2
) via random allocation of the microbeads on a microstructured glass is presented. The size and shape of the microbeads and the microcavities are selected in such a way so that only one microbead can fit into the respective microcavity. Each microbead can be loaded with a certain type of molecule e.g. amino acids and is brought in the microcavities stochastically. Applying solvent vapor and heating the substrate, the molecules are released from the microbeads and coupled to the functionalized substrate. To differentiate between the microbeads carrying different molecules, quantum dot labels are preliminary introduced into the microbeads. Fluorescence imaging and subsequent data analysis enable decoding of the molecule deposition patterns. After the coupling step is completed, the microbeads are mechanically removed from the microwells. The composition of the monomer microbeads, their deposition and the conditions of the monomer extraction are studied. The stochastic monomer patterning may be used to design novel molecular arrays.
Journal Article
Digital Detection of Exosomes by Interferometric Imaging
by
Ozkumur, Ayca Yalcin
,
Ciani, Miriam
,
Gagni, Paola
in
631/61/32
,
692/53/2421
,
Alzheimer's disease
2016
Exosomes, which are membranous nanovesicles, are actively released by cells and have been attributed to roles in cell-cell communication, cancer metastasis, and early disease diagnostics. The small size (30–100 nm) along with low refractive index contrast of exosomes makes direct characterization and phenotypical classification very difficult. In this work we present a method based on Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) that allows multiplexed phenotyping and digital counting of various populations of individual exosomes (>50 nm) captured on a microarray-based solid phase chip. We demonstrate these characterization concepts using purified exosomes from a HEK 293 cell culture. As a demonstration of clinical utility, we characterize exosomes directly from human cerebrospinal fluid (hCSF). Our interferometric imaging method could capture, from a very small hCSF volume (20 uL), nanoparticles that have a size compatible with exosomes, using antibodies directed against tetraspanins. With this unprecedented capability, we foresee revolutionary implications in the clinical field with improvements in diagnosis and stratification of patients affected by different disorders.
Journal Article
Isolation of rare circulating tumour cells in cancer patients by microchip technology
by
Nagrath, Sunitha
,
Bell, Daphne W.
,
Irimia, Daniel
in
Biological and medical sciences
,
Blood
,
Cancer
2007
Out of circulation
Viable tumour-derived epithelial cells — or circulating tumour cells (CTCs) — are found in peripheral blood from cancer patients, and are the probable origin of intractable metastatic disease. The isolation of such cells from cancer patients has been proven to be very difficult, primarily due to their exceedingly low numbers in peripheral blood. Now a microfluidic platform 'CTC-chip' has been developed, capable of selective, efficient separation of CTCs from the blood of cancer patients. This new tool could be used in the detection and diagnosis of cancers, and to monitor an individual patient's response to therapy.
A microfluidic platform that is capable of efficiently and selectively separating viable circulating tumour cells (CTCs) from peripheral blood samples has been developed. Low levels of CTCs in the peripheral blood of patients with various cancers were identified, and it was shown that this device could be used to monitor an individual patient's response to anti-cancer therapy.
Viable tumour-derived epithelial cells (circulating tumour cells or CTCs) have been identified in peripheral blood from cancer patients and are probably the origin of intractable metastatic disease
1
,
2
,
3
,
4
. Although extremely rare, CTCs represent a potential alternative to invasive biopsies as a source of tumour tissue for the detection, characterization and monitoring of non-haematologic cancers
5
,
6
,
7
,
8
. The ability to identify, isolate, propagate and molecularly characterize CTC subpopulations could further the discovery of cancer stem cell biomarkers and expand the understanding of the biology of metastasis. Current strategies for isolating CTCs are limited to complex analytic approaches that generate very low yield and purity
9
. Here we describe the development of a unique microfluidic platform (the ‘CTC-chip’) capable of efficient and selective separation of viable CTCs from peripheral whole blood samples, mediated by the interaction of target CTCs with antibody (EpCAM)-coated microposts under precisely controlled laminar flow conditions, and without requisite pre-labelling or processing of samples. The CTC-chip successfully identified CTCs in the peripheral blood of patients with metastatic lung, prostate, pancreatic, breast and colon cancer in 115 of 116 (99%) samples, with a range of 5–1,281 CTCs per ml and approximately 50% purity. In addition, CTCs were isolated in 7/7 patients with early-stage prostate cancer. Given the high sensitivity and specificity of the CTC-chip, we tested its potential utility in monitoring response to anti-cancer therapy. In a small cohort of patients with metastatic cancer undergoing systemic treatment, temporal changes in CTC numbers correlated reasonably well with the clinical course of disease as measured by standard radiographic methods. Thus, the CTC-chip provides a new and effective tool for accurate identification and measurement of CTCs in patients with cancer. It has broad implications in advancing both cancer biology research and clinical cancer management, including the detection, diagnosis and monitoring of cancer
10
.
Journal Article
Coherent spin-exchange via a quantum mediator
by
Vandersypen, Lieven Mark Koenraad
,
Fujita, Takafumi
,
Wegscheider, Werner
in
142/126
,
639/766/483/2802
,
639/766/483/3926
2017
Two electron spins occupying the outer dots in a linear array of three quantum dots experience a coherent superexchange interaction through the empty middle dot that acts as a quantum mediator.
Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling ‘on-chip’ is to use a quantum mediator, as has been demonstrated for superconducting qubits
1
,
2
and trapped ions
3
. For quantum dot arrays, which combine a high degree of tunability
4
with extremely long coherence times
5
, the experimental demonstration of the time evolution of coherent spin–spin coupling via an intermediary system remains an important outstanding goal
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
,
24
,
25
. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout
26
, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref.
27
), high-temperature superconductors
28
and DNA
29
. The same superexchange concept can also be applied in cold atom experiments
30
.
Journal Article
An extracellular matrix microarray for probing cellular differentiation
by
Flaim, Christopher J
,
Chien, Shu
,
Bhatia, Sangeeta N
in
Animals
,
Bioinformatics
,
Biological Microscopy
2005
We present an extracellular matrix (ECM) microarray platform for the culture of patterned cells atop combinatorial matrix mixtures. This platform enables the study of differentiation in response to a multitude of microenvironments in parallel. The fabrication process required only access to a standard robotic DNA spotter, off-the-shelf materials and 1,000 times less protein than conventional means of investigating cell-ECM interactions. To demonstrate its utility, we applied this platform to study the effects of 32 different combinations of five extracellular matrix molecules (collagen I, collagen III, collagen IV, laminin and fibronectin) on cellular differentiation in two contexts: maintenance of primary rat hepatocyte phenotype indicated by intracellular albumin staining and differentiation of mouse embryonic stem (ES) cells toward an early hepatic fate, indicated by expression of a β-galactosidase reporter fused to the fetal liver-specific gene,
Ankrd17
(also known as
gtar
). Using this technique, we identified combinations of ECM that synergistically impacted both hepatocyte function and ES cell differentiation. This versatile technique can be easily adapted to other applications, as it is amenable to studying almost any insoluble microenvironmental cue in a combinatorial fashion and is compatible with several cell types.
Journal Article
Poking cells for efficient vector-free intracellular delivery
Techniques for introducing foreign molecules and materials into living cells are of great value in cell biology research. A major barrier for intracellular delivery is to cross the cell membrane. Here we demonstrate a novel platform utilizing diamond nanoneedle arrays to facilitate efficient vector-free cytosolic delivery. Using our technique, cellular membrane is deformed by an array of nanoneedles with a force on the order of a few nanonewtons. We show that this technique is applicable to deliver a broad range of molecules and materials into different types of cells, including primary neurons in adherent culture. Especially, for delivering plasmid DNAs into neurons, our technique produces at least eightfold improvement (~45% versus ~1–5%) in transfection efficiency with a dramatically shorter experimental protocol, when compared with the commonly used lipofection approach. It is anticipated that our technique will greatly benefit basic research in cell biology and also a wide variety of clinical applications.
The incorporation of foreign objects into cells can be used in various avenues of biological research, although crossing the cell membrane can be challenging. Here, the authors use a diamond nanoneedle array for enhanced delivery of various particles into cells, including neurons.
Journal Article
Automated analytical microarrays: a critical review
2008
Microarrays provide a powerful analytical tool for the simultaneous detection of multiple analytes in a single experiment. The specific affinity reaction of nucleic acids (hybridization) and antibodies towards antigens is the most common bioanalytical method for generating multiplexed quantitative results. Nucleic acid-based analysis is restricted to the detection of cells and viruses. Antibodies are more universal biomolecular receptors that selectively bind small molecules such as pesticides, small toxins, and pharmaceuticals and to biopolymers (e.g. toxins, allergens) and complex biological structures like bacterial cells and viruses. By producing an appropriate antibody, the corresponding antigenic analyte can be detected on a multiplexed immunoanalytical microarray. Food and water analysis along with clinical diagnostics constitute potential application fields for multiplexed analysis. Diverse fluorescence, chemiluminescence, electrochemical, and label-free microarray readout systems have been developed in the last decade. Some of them are constructed as flow-through microarrays by combination with a fluidic system. Microarrays have the potential to become widely accepted as a system for analytical applications, provided that robust and validated results on fully automated platforms are successfully generated. This review gives an overview of the current research on microarrays with the focus on automated systems and quantitative multiplexed applications. [graphic removed]
Journal Article
Solution-based circuits enable rapid and multiplexed pathogen detection
by
Holmes, Richard D.
,
Live, Ludovic
,
Sargent, Edward H.
in
639/638/11/277
,
639/925/352/1060
,
692/699/255
2013
Electronic readout of markers of disease provides compelling simplicity, sensitivity and specificity in the detection of small panels of biomarkers in clinical samples; however, the most important emerging tests for disease, such as infectious disease speciation and antibiotic-resistance profiling, will need to interrogate samples for many dozens of biomarkers. Electronic readout of large panels of markers has been hampered by the difficulty of addressing large arrays of electrode-based sensors on inexpensive platforms. Here we report a new concept—solution-based circuits formed on chip—that makes highly multiplexed electrochemical sensing feasible on passive chips. The solution-based circuits switch the information-carrying signal readout channels and eliminate all measurable crosstalk from adjacent, biomolecule-specific microsensors. We build chips that feature this advance and prove that they analyse unpurified samples successfully, and accurately classify pathogens at clinically relevant concentrations. We also show that signature molecules can be accurately read 2 minutes after sample introduction.
Rapid, highly multiplexed molecular detection platforms may enable more specific and effective disease diagnosis. Here, a solution-based circuit is reported that enables the analysis of samples for panels of pathogens and antibiotic-resistance profiles at clinically relevant levels in less than 2 min.
Journal Article
Succinylated Jeffamine ED-2003 coated polycarbonate chips for low-cost analytical microarrays
2019
Analytical microarrays feature great capabilities for simultaneous detection and quantification of multiple analytes in a single measurement. In this work, we present a rapid and simple method for bulk preparation of microarrays on polycarbonate sheets. Succinylated Jeffamine® ED-2003 was screen printed on polycarbonate sheets to create a polyfunctional shielding layer by baking at 100 °C. After microdispension of capture probes (antibodies, oligonucleotides, or small molecules) in a microarray format, chips were assembled with a flow cell from double-sided tape. It was shown that the shielding layer was firmly coated and suppressed unspecific binding of proteins. Universal applicability was demonstrated by transferring established flow-based chemiluminescence microarray measurement principles from glass slides to polycarbonate chips without loss of analytical performance. Higher chemiluminescence signals could be generated by performing heterogeneous asymmetric recombinase polymerase amplification on polycarbonate chips. Similar results could be shown for sandwich microarray immunoassays. Beyond that, lower inter- and intra-assay variances could be measured for the analysis of Legionella pneumophila Serogroup 1, strain Bellingham-1. Even surface regeneration of indirect competitive immunoassays was possible, achieving a limit of detection of 0.35 ng L−1 for enrofloxacin with polycarbonate microarray chips. Succinylated Jeffamine ED-2003 coated polycarbonate chips have great potential to replace microtiter plates by flow-based chemiluminescence microarrays for rapid analysis. Therefore, it helps analytical microarrays to advance into routine analysis and diagnostics.
Journal Article
Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays
2013
Malignant melanoma, the deadliest form of skin cancer, is characterized by a predominant mutation in the
BRAF
gene
1
,
2
,
3
. Drugs that target tumours carrying this mutation have recently entered the clinic
4
,
5
,
6
,
7
. Accordingly, patients are routinely screened for mutations in this gene to determine whether they can benefit from this type of treatment. The current gold standard for mutation screening uses real-time polymerase chain reaction and sequencing methods
8
. Here we show that an assay based on microcantilever arrays can detect the mutation nanomechanically without amplification in total RNA samples isolated from melanoma cells. The assay is based on a
BRAF
-specific oligonucleotide probe. We detected mutant
BRAF
at a concentration of 500 pM in a 50-fold excess of the wild-type sequence. The method was able to distinguish melanoma cells carrying the mutation from wild-type cells using as little as 20 ng µl
–1
of RNA material, without prior PCR amplification and use of labels.
Microcantilever arrays are used to detect individual point mutations in a gene associated with melanoma cancer, offering a rapid test for deciding whether or not patients are eligible to receive drug treatment.
Journal Article